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Abstract: This paper presents a systematic review of Construction 4.0 in the context of the building
information modeling (BIM) 4.0 premise. It comprises a review of the industry in the pre-fourth
industrial revolution (4IR) age, the current and anticipated development of the 4IR, Construction
4.0’s origin and applications, and the synergy of its main drivers, i.e., the synergy of BIM with the
internet of things (IoT) and big data (BD). The main aim of the paper is to determine the Construction
4.0 drivers and to what extent are they initialized by the 4IR, their development and their synergy
with BIM, and the direction of BIM’s implementation in the construction phase. It was found that
the main drivers of Construction 4.0, which originated from the 4IR, are BIM, IoT, and BD, but with
specific implementations. The results of the analysis of BIM with IoT and/or BD revealed that the
integrative approaches combining the aforementioned drivers show signs of project enhancement by
providing significant benefits, such as improved real-time monitoring, data exchange and analysis,
construction planning, and modeling. Furthermore, it was revealed that the main drivers are mostly
applied in the project’s preconstruction phase, which is continuously developing and becoming more
automated. The state-of-the-art review presented in this paper suggests that BIM is in transition,
adopting Construction 4.0 to become BIM 4.0.

Keywords: BIM; Construction 4.0; Industry 4.0; IoT; Big Data

1. Introduction

The fourth industrial revolution (4IR), also colloquially referred to as Industry 4.0, is
expected to bring growth, enhancement, and accelerated development to most industries in
the near future. In comparison to the previous technological revolutions, the 4IR could be
the first revolution simultaneously active in most parts of the world, due to globalization
trends. Industries that have already stepped in and adopted the 4IR report that 4IR changes
are mostly stimulated by the emergence of new technologies, i.e., drivers, such as digital
twin construction (DTC), building information modeling (BIM), internet of things (IoT),
Big Data (BD), and additive manufacturing (AM)/3D printing. These technologies have,
to a certain extent, already changed most industries, but industries are still not seriously
adopting the full potential of the 4IR. An example of such partial implementation of the
aforementioned technologies is the construction industry, which in light of the 4IR is often
referred to as Construction 4.0. The introduction of the Construction 4.0 concept and
new technologies is anticipated to be a major challenge for a commonly sluggish industry.
Among numerous recent reports and strategic studies regarding Construction 4.0, a report
published in 2016 by the Roland Berger consultant company [1] stated that Construction
4.0 provides a variety of possibilities for stakeholders in the construction industry to boost
their productivity in all kinds of ways. However, just 6% of construction companies of
construction companies make full use of digital planning tools, while 93% of them agree that
digitization will affect every process. Despite the poor adoption rates, a report from 2019 [2],
published by the Publications Office of the European Union, underlines the potential of
digital transformation in the architecture, engineering, and construction (AEC) sector as
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extremely significant since it can bring about improved efficiency, competitiveness, and
better resource utilization for the construction industry. Due to the size of the construction
industry, even small improvements would result in significant benefits for society since
construction is a determinant of where and how most people live and work [3].

The construction industry is considered to be in a continuous reengineering phase,
with recent innovations showing the immense contributions of significant aspects such
as safety, sustainability, project performance, lean production, site monitoring, design,
construction automation, etc. Construction 4.0 has increasingly attracted the interest of
academics and professionals in the last few years, judging by the growing number of
papers published addressing the topic. Perhaps the most systematic and comprehensive
literature review of the 4IR’s impact on the construction industry was published in 2016,
in which the authors still referred to Construction 4.0 using the German term “Bauen
4.0” [4]. The authors presented the technologies associated with the concept of the 4IR
in the context of the construction industry and provided a look at the state of the art of
those technologies. Among numerous important and insightful conclusions, the authors
underlined that Construction 4.0 comprises many interdisciplinary technologies that are at
different levels of maturity: some are widely applied, and some are still being developed.
A survey regarding the maturity of technologies was conducted in [5], where the aim was
to determine stakeholders’ opinions on given questions. The results were surprising as
they showed the same levels of maturity of technologies. The authors believe that the
results can be highly influenced by the type of stakeholder, i.e., different technologies will
reveal different maturity levels depending on the role of the stakeholder in construction
projects. In the context of the implementation of such diverse technologies, the integrated
design and delivery solutions (IDDS) framework can be of use, while the emergence of new
technologies such as off-site manufacturing and construction design and build automation
will ensure the optimal development of IDDS [6]. Klinc and Turk [7] explained the Industry
4.0 concept in terms of the historical evolution from Industry 1.0 to Industry 3.0. The
paper highlights the fact that, before Industry 4.0, a human mediator between the real and
the digital world was necessary. Additionally, they stated that cyberphysical systems are
the key technology of Industry 4.0. Another study provided a survey of DTC systems,
identifying the business platforms, implementation barriers, and challenges for future
development [8]. The authors pointed that, even though it may seem like it, DTC is not
just a logical progression from or extension of BIM. Rather, DTC frames a comprehensive
mode of construction by prioritizing the closure of control loops upon reliable, accurate,
thorough, and timely information.

In another interesting and informative literature review [9], the authors focused on
Construction 4.0, providing a map of the research themes and clusters over 10 years
of scientific publications. The authors highlighted that BIM, as a keyword, was most
mentioned, and showed that augmented reality (AR) and virtual reality (VR) are relevant
to the Construction 4.0 concept as well. Although the numerous benefits of BIM are
well recognized, BIM has still not reached its full potential in the construction industry,
especially in the construction phase of projects. While BIM is, arguably, highly applied
in the construction design phase, it continuously lacks integration in the realization, i.e.,
on-site implementation in the construction phase.

Our main motivation, based on the further study topics discussed by Osterreicher
and Tetueberg [4] and Boton et al. [9], was to determine whether the main drivers of
Construction 4.0 are what it takes to reach BIM’s potential in the construction phase. Al-
though the scope of BIM benefits is well recognized, BIM has still not reached its full
potential, especially in the construction phase of projects. There are recently published
papers confirming sluggish BIM adoption and the main barriers to its implementation
worldwide [10–15]. Among the numerous barriers reported in the aforementioned papers,
most lie in the required knowledge, effort, initial costs, traditionalism, and inadequate
organizational support for BIM’s full implementation in the entire project life cycle. One re-
cent study [16] underlined the main contractual issues associated with BIM and connected
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the current treatment of BIM with uncertainties concerning the existing legal paradigm as
a barrier to the full use of BIM. A well-received contribution towards helping the industry
worldwide can be directly connected to the development of the ISO 19650 standard. The
aforementioned standard ISO 19650 consists of six parts [17–22] so far. It is an international
standard for managing information over the whole life cycle of a built asset using BIM. It is
important to underline parts 3 [19] (i.e., ISO 19650-3 Organisation of information about con-
struction works—Information management using building information modelling—Part 3:
Operational phase of assets) and 5 [21] (i.e., ISO 19650-5 Organisation of information about
construction works—Information management using building information modelling—
Part 5: Specification for security-minded building information modelling, digital built
environments and smart asset management), which aim to aid BIM’s adoption in the
construction phase. For this research, part 5 of the ISO 19650 standard, stating that “the
security-minded approach can be applied throughout the lifecycle of an initiative, project,
asset, product or service, whether planned or existing, where sensitive information is
obtained, created, processed and/or stored,” has the most importance, especially in terms
of security-minded building information modeling, digital built environments, and smart
asset management.

We hypothesize that BIM in Construction 4.0 will metamorphose into an active internet
data exchange environment, i.e., BIM 4.0. The main research questions that arose are
structured as follows:

RQ1—By which drivers, and to what extent, is Construction 4.0 initialized by the 4IR?
RQ2—What are the relationships among the main drivers of Construction 4.0?
RQ3—What are the key directions of BIM development regarding the other main

drivers of Construction 4.0?
RQ4—Is BIM 4.0 directed towards the construction phase, and will this enhance its

overall adoption by the construction industry?
The remainder of this paper is organized as follows. In Section 2, the applied research

methods are thoroughly described. Section 3 presents the literature review, focused on
the 4IR. Section 4 includes the Construction 4.0 paradigm and a detailed analysis of each
of its detected drivers. Meanwhile, Section 5 analyzes the current state of the art in the
area of BIM integrated with IoT and BD. In Section 6, there is a discussion and in Section 7
conclusions are drawn.

2. Research Methods

This paper presents a systematic literature review, with references filtered and ex-
tracted from recently published relevant scientific papers, reports, and conference papers
indexed in Web of Science and Scopus. Since the topic is developing worldwide, there
have been numerous studies published in the past decade. The research was initialized by
determining the main keywords (i.e., third industrial revolution, fourth industrial revolu-
tion, industry 4.0, construction 4.0, cyberphysical systems, CPS, digital twins, BIM, BIM
4.0, internet of things, IoT, Big Data, additive manufacturing, and 3D printing), which were
used in various combinations for each segment of the paper. In Figure 1, the scope and
gradual importance of research objectives are presented. Since the topics, i.e., the foci of
the research, overlap and can hardly be thematically or periodically discretely separated,
their overlaps are presented as fuzzy, as shown in Figure 1.

Due to the fact that the topics of the research move from a wide scope to a single
research objective, the main challenge was filtering the relevant literature. In our first
literature search, the keywords highlighted in the systematic literature review by Oesterre-
ich and Teuteberg [4] were applied, and we went through several rounds of narrowing,
aiming at simultaneous appearances of both BIM and BD, as well as BIM and IoT. The
vast majority of references date from 2010–2020, with a few exceptions in the first chapter
regarding previous industrial revolutions.



Buildings 2021, 11, 337 4 of 24

The literature review presented in this research resulted in a total of 172 referenced
sources. A standard software tool for constructing and visualizing bibliometric networks,
i.e., VOS viewer software, was used to present the keywords referenced in the paper [23].
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3. Industrial Revolutions: Genesis, Drivers, and Overlaps
3.1. Industries Pre-4IR

History has shown that industrial revolutions tend to have a slow starting pace, but
with time, have a galloping impact on shaping common production technologies, everyday
lifestyles, etc. [24]. In general, the term industrial revolution can be defined as a widespread
dramatic change in the methods of producing goods and services [25]. Like the previous,
i.e., first and second industrial revolutions, the third industrial revolution (3IR) was also
driven by technological advances regarding manufacturing, distribution, and energy fac-
tors [24]. In the first industrial revolution, it was the printing press, in the second industrial
revolution it was radio and television, and in the 3IR, it is/was the combined power of
computing, telecommunications, and news broadcasting [26]. It is believed that society will
emerge from the 3IR as a dynamic “global village” because technology companies, content
providers, and information professionals will empower people to browse, retrieve, share,
and use data for personal and professional uses. While the 3IR indeed fulfilled most of its
potentials in the majority of the developed countries, in developing economies it still has
not [25]. Digital tools and equipment are still becoming widely used for either designing or
manufacturing products enhancing the sharing of designs and easier collaboration among
stakeholders. Therefore, the manufacturing resources pool is significantly larger in scale
than what any single maker could achieve [27]. On the other hand, it is believed that direct
digital manufacturing is not merely a stimulus of the 3IR, but one of its effects. The main
challenge of the 3IR was found to be the traditionalism of most industries, manifested in
the sluggish upgrade of established enterprises in accepting and implementing reengi-
neering [28]. When it comes to 3IR technologies, among others, six major high-technology
agents are underlined in the literature, i.e., microprocessor, computer-aided design and
manufacturing (CAD/CAM), fiber optics, biogenetics, lasers, and holography [28]. There
is a special emphasis on the development of microelectronics technology at this historical
juncture [29]. The main reason for its importance is an immense impact on the affordability
of computing power. Due to the simultaneous reduction in the cost of computers and the
massive increase in their power, the microprocessor made computers accessible to a large
number of people who could not have afforded or operated their predecessors [30]. An
additional challenge is the interaction between technological changes and the international
division of labor [29]. The 3IR began to affect labor in industrialized countries by the
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late 1970s because, in developed countries, increased income and living standards made
customers more sophisticated and demanding. At the same time, the market for lasting
consumer goods was saturated and their demand subsided. As for the negative side
effects, unemployment arose during the 3IR and is mostly associated with difficulties in
the process of transferring the labor force from industry to services [31]. Additionally, the
economic migration of many workers to more developed countries has caused shortages in
the workforce in less developed countries, which will continue to persist as a problem in
the 4IR [32]. It is anticipated that some of the problems and challenges that the 3IR faced
will be resolved in the 4IR, but new ones may emerge.

3.2. The Fourth Industrial Revolution (4IR)

Even though some benefits of the 3IR have not yet reached much of the world’s
population, in developed countries the 4IR has already taken its place [33]. The 4IR, also
referred to as “Industry 4.0,” made its first appearance at the Hannover Fair in 2011 [34].
Schwab [33] characterized the 4IR as “a fusion of technologies that are blurring the lines
between the physical, digital, and biological spheres.” Unlike the previous Industrial
Revolutions, the 4IR is progressing at an exponential pace, not sluggishly nor in a linear
manner. It is expected that, in the future, technological innovation will reinforce the supply
side and bring about gains in efficiency and productivity in the long run. Additionally,
production process automation aims to reduce the scale problem of labor force deficiency
reported in the 3IR. It is believed that it is necessary to implement new technologies
for automation to achieve complete digitization and intelligence of existing industrial
processes [35]. Therefore, the future of manufacturing may see industrial production
systems become more intelligent by using digital systems to create more knowledge-based
productions, which will greatly improve their efficiency and competitiveness.

As described above, the 4IR is considered to be mainly dependent on building a CPS to
create a digital and intelligent factory, to navigate manufacturing towards becoming more
digital, information-led, customized, and sustainable [36]. The 4IR integrates IT systems
with physical systems to get a CPS that brings the real world into VR [37]. Those systems
represent the integration of an information system (IT) with mechanical and electronic
components that are connected to online networks and allow for communication between
machines in a way that is similar to social networks [38]. The cyberphysical integration
is also enabled by the digital twin (DT) concept, which can be considered a necessary
path to realize CPS [39]. Ultimately, CPSs and DTs enable the integration of production,
sustainability, and customer satisfaction while forming the basis of intelligent network
systems and processes [40]. Besides CPS and DT, 4IR also uses IoT to connect production
technologies with smart production processes to make manufacturing smart [41,42]. The
basic idea of IoT is to make “things” around us communicate with each other to achieve
mutual goals, with its main feature being the integration of various identification and
tracking technologies, i.e., wired and wireless sensors and actuator networks, enhanced
communication protocols, and distributed intelligence for smart objects [43]. The imple-
mentation of the IoT concept will be enhanced by the fifth-generation mobile network (5G),
which is the term used to describe the next generation of wireless networks. The features
of the 5G network will provide the user with several performance enhancements regarding
network capacity increase, shorter latency, more mobility, and increased network reliability
and security, which will, in turn, result in an all-connected environment called the IoT [44].
The final puzzle is the structure or environment that can handle the managed information
by CPS and IoT, and that is BD and cloud computing [45]. With that being said, it is clear
that one of the most important technologies, besides IoT, adopted in the 4IR is BD, which
is related to the collection, processing, and analysis of a large amount of structured and
unstructured data with intelligent algorithms [37]. The term BD is derived from the fact
that the datasets are so large that typical database systems are not able to store and analyze
them; also, the data are no longer traditionally structured, but originate from many new
sources including e-mail, social media, and Internet-accessible sensors [46]. Using BD to
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replace processes that are done manually may make certain jobs outdated, but may also
create new categories of jobs and opportunities that currently do not exist in the market [33].
One of the definitions of BD provided in [47], and also the most widespread one, is the “4V”
theory, stating that BD comprises a variety of resources and contains a great volume of data;
BD streams in at a high rate and must be handled timely, which implies velocity; BD comes
in a variety of formats; BD has to be cleaned to ensure the validity. BD analysis may require
a considerable commitment of hardware using the old hardware storage method, but the
emergence of cloud computing promises to make it small, by reducing computational
costs while increasing the elasticity and reliability of systems [48]. Another important
feature of the 4IR is AM or 3D printing, which represents the capability of producing
three-dimensional objects from virtual models [45]. According to [49], the advantages of
AM are the possibility of designing and developing products. Additionally, companies
are using AM to capitalize on its benefits like complexity for free manufacturing, while
in traditional manufacturing a direct connection between complexity and manufacturing
costs exists. The aforementioned technologies are becoming increasingly implemented
in many industries, including in the construction industry, where the whole concept has
merited a new term, Construction 4.0.

4. Construction 4.0
4.1. The Construction 4.0 Paradigm

It is a common belief that the first mention of Construction 4.0 dates back to 2016,
and was primarily based on construction companies’ awareness of the importance of
digitization in the construction industry [1,50]. Thus, it can be said that Construction
4.0 is the convergence of industrial production, CPSs, and digital technologies with the
ultimate goal of creating a digital construction site [34]. As such, it is anticipated that
Construction 4.0 will fundamentally influence organizational and project structures, since
the framework of Construction 4.0 enables planning, designing, and delivering built
assets more effectively and efficiently, with the focus being on the physical-to-digital
transformation and then digital-to-physical [51,52]. Construction 4.0 can be defined as
a paradigm that comprises CPSs and the internet of things, data, and services, with the
main aim of connecting the digital layer, which consists of BIM and the common data
environment (CDE), with the physical layer, which consists of the asset and its lifecycle.
Besides CPS, the Construction 4.0 framework also uses digital ecosystems and links them
with CPS, which is used as a core driver [53], where digital ecosystems represent “an
interdependent group of enterprises, people, and/or things that share standardized digital
platforms for a mutually beneficial purpose, such as commercial gain, innovation or
common interest.” The conceptual model of a digital ecosystem consists of a business
network of third-party developers, boundary objects, and a core digital platform [34]. The
ultimate goal is to create an interconnected environment that integrates organizations,
processes, and information with the purpose of efficiently designing, constructing, and
operating assets [54]. According to a report of the Digital Supply Chains in the Built
Environment Work Group (DSCiBE) [55], the introduction of BIM can be considered
the first step towards a collaborative digital communication and has also pushed the
construction industry to look at how it can deliver value through data. The main aim of the
report by the DSCiBE task group was the standardization and interoperability of product
data as well as digital product identification. As expected, the drivers of Construction 4.0
have their benefits and challenges; the main ones are presented in Table 1.
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Table 1. Construction 4.0: main benefits vs. main challenges.

Benefits [4,51,56,57] Challenges [4,58–62]

adoption of the lifecycle building approach,
reduction of waste and efficiency improvement,

horizontal, vertical, and longitudinal integration,
improving sustainability,
cost and time reduction,

improved safety performance,
enhanced quality of buildings,

improvement of the poor image of the construction industry

high initial investments,
lack of skilled workforce and the need for enhanced work skills,

deficiency of globally agreed standards for the construction
industry,

data security, i.e., cybersecurity
lack of knowledge about Construction 4.0

resistance of the construction industry to change

Identification of the Construction 4.0 drivers, as the initial step in its development, has
been a relevant research topic in the last five years. Various authors have identified various
drivers, i.e., various technologies that have enabled the emergence of the Construction 4.0
concept. In 2016, popular media such as newspaper articles, magazine articles, blogs, and
websites were analyzed to determine which technologies are considered a part of the 4IR. It
was found that the central technologies are BIM, Cloud Computing, and IoT. Moreover, it
was concluded that all of the 4IR technologies are at different levels of maturity [4]. In 2019,
research presented in [63] determined that there is an active collaboration between BIM
and 4IR technologies. Additionally, it was found that there is a lack of understanding of the
4IR concept in the construction industry [63]. In 2020, four technologies were determined
to be essential to the understanding of Construction 4.0: 3D printing, BD, VR, and IoT.
The research was conducted using a bibliometric analysis and by analyzing the keyword
occurrence [50]. In the same year, Maskuriy et al. [64] researched the application of 4IR
technologies in construction and found that most integrated technologies have focused on
the preconstruction phase. Furthermore, in the literature review in [65], it was noted that
Germany leads the field of Construction 4.0, and is followed by China, the United States, etc.
Moreover, a UK-based multinational construction design consultancy firm was analyzed,
and the results showed that there are many barriers to implementing Construction 4.0, such
as residual managerial practices. As some of the main enablers for the implementation
of the Construction 4.0 concept, the following technologies were identified: IoT, Cloud
computing, BD, Artificial intelligence (AI) and robotics, and cybersecurity [65]. Table 2
presents the summarized chronological findings and applied methodologies regarding
Construction 4.0 drivers in the last five years.

Table 2. Chronological findings and applied methodologies of Construction 4.0 drivers.

Year, Reference Methodology Main Findings—Drivers, Aims and Challenges

2016, [4] Systematic literature review;
Method and data triangulation

Central 4IR technologies are BIM, Cloud Computing, and IoT; 4IR
technologies are at different levels of maturity

2019, [63] Bibliometric mapping study
method; scoping review technique

There is a lack of a complete understanding of the 4IR concept in the
construction industry; there is an active collaboration between BIM

and 4IR technologies

2020, [50] Bibliometric analysis

4IR technologies—3D printing, BD, VR, and IoT are essential to
understand the Construction 4.0 concept; the USA, UK, and China

are leaders in publications regarding Construction 4.0; the number of
Construction 4.0 publications is growing exponentially

2020, [64] Classification of existing literature Most research regarding 4IR in the construction industry is focused
on the preconstruction stage

2020, [65] Synthesis of extant literature;
empirical case study

Germany leads in the field of Construction 4.0, followed by China
and the United States; residual managerial practices are a barrier to

implementing Construction 4.0; main enablers: IoT, Cloud
computing, BD, AI and robotics, and cybersecurity
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It can be noted that the aforementioned challenges of Construction 4.0 have also been
reported by the authors presented in Table 2. Additionally, the most prevalent drivers of
Construction 4.0 are considered to be BIM, IoT, and BD, which are mentioned by most of
the authors.

4.2. Drivers of the Construction 4.0
4.2.1. Cyberphysical Systems (CPS) and Digital Twins (DT)

The stimulus for applying CPS in the construction industry is their integration of
physical systems and their virtual representations, i.e., their DTs, to create an integrated
analytical system, where a DT is the real-time digital representation of a building or
infrastructure [66]. Such a system should be able to adapt to changes at construction
sites and connect the virtual world with the physical world by using sensors or data
acquisition technologies and actuators [67,68]. The changes should update the state in
the form of measurements, data, and pictures, which are then updated in the DT and
allow for continuous monitoring of a 4D BIM model [66]. According to [34], CPS consists
of the physical part, which is usually a device, a machine, or building, and a cyber part,
which is usually data, a software system, or a communication network. Furthermore, CPSs
are systems of interconnected physical and digital twins, where the digital twins are the
virtual assets or simulations of the physical object in real time. Additionally, digital and
physical twins are reciprocally connected by sensors and actuators. By enabling a tight
connection between computational models and associated physical entities, the integration
of CPS and DT offers a way for construction project teams to bridge the gap between
virtual models and physical construction and can therefore be considered the “heart” of
Construction 4.0 [58]. Many innovative technologies, such as prefabrication, automation,
3D printing, VR, AR, unmanned aerial vehicles (UAV), sensor networks, and robotics
for repetitive or unsafe procedures, are enabled by bidirectional communication between
construction components and their digital representations [34,58]. Therefore, the built
environment is a rich area for the application of the CPS and DT framework since smart
buildings, cities, and infrastructure are all examples of what may be called cyberphysical
environments, where the built environment becomes increasingly intelligent and digitally
connected [69]. Ultimately, CPS can be considered as the key to achieving more efficient,
safer, and more environmentally friendly construction projects, which are also the goals
of Construction 4.0 [34]. As mentioned earlier, CPS consists of two principal elements,
i.e., the “physical to cyber” bridge and the “cyber to physical” bridge [70,71]. In terms
of construction, the physical to cyber bridge represents construction components and
processes that are tracked using sensors and other tracking systems [58]. In addition, the
progress and changes in the construction process are monitored and coordinated with their
associated cyber representations for further action. The cyber to physical bridge covers the
actuation dimension and dictates how the information from the sensors is used to manage
the system, which means that actuators in this sense involve transmitting appropriate
information to enable prompt decision making. Improved safety has the potential to be the
key benefit of implementing CPS and DT in the construction industry since it is predicted
that project managers and safety specialists will have access to locations of employees
and heavy equipment at all times [72,73]. Additionally, sensors have made data exchange
among workers easier and provided opportunities to monitor their health to increase
safety [74]. Moreover, structure monitoring sensors can detect malfunctioning structural
components to ensure site safety.

In [58], the application of CPS for various purposes in the construction industry was
analyzed, such as for construction component tracking, temporary structure monitoring,
and mobile crane safety. Furthermore, a cyber model named Petri Net [75] was adopted as
a model for a construction process and two application scenarios of automatic assembly
and traditional structural masonry were simulated. In [76], a citizen service center was
presented for the verification of the technical feasibility and implementation effect of a
CPS framework, in which the real-time construction model acts as the digital twin of the
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building under construction. It was concluded that, benefitting from real-time monitoring,
simulations, and the decision support mechanism of the proposed CPS, future construction
plans will no longer be fixed and predefined, but it will be possible to make and adjust
schedules according to the actual situation in the construction process.

4.2.2. Building Information Modeling (BIM)

The subject of BIM currently represents a central topic for the improvement of the
construction industry, and simultaneously a core technology for supporting the idea of the
4IR in the construction industry [4]. Since BIM is increasingly being adopted and utilized
in the architecture, engineering, and construction (AEC) domain [77], it can act as a catalyst
for deeper adoption of digitization, which is also due to the quick and good acceptance it
has received [78]. As the center of the digitization of the construction industry, together
with the 4IR concept, BIM can close the digital gap that still exists and have a positive
impact on future building processes [79]. By incorporating various properties, BIM can
offer a high-accuracy representation of a project at the level of components [76], and an
integrated three-dimensional model can be adopted to completely express the definition
information of buildings [80]. An important feature is the bidirectional coordination
between the physical and virtual domains. That coordination leads to a digital replica of
the building, which improves the control and optimization of the construction process
while also generating valuable data for the building’s operation/maintenance, as well
as for the design and planning phase of future construction [63]. The mentioned virtual
replica of the building can be compared to a similar concept in the manufacturing industry
called the digital twin [81]. Various subsets of BIM can be referred to as dimensions, where
3D is the object model, 4D is time, 5D is cost, 6D is operation, 7D is sustainability, and 8D is
safety [59].

Among others, an interesting study that represents a notable example of the impor-
tance of BIM by pointing out that BIM can help users share project information during the
entire construction lifecycle was presented in [82]. The building’s information is available
to everyone included in the construction project, from the design team to the construction
team and the owner of the building. Additionally, all mentioned project members have the
possibility of adding or changing information during their period of using the BIM model,
which is done by the integration of BIM into cloud computing. Thus, the project stake-
holders can collaborate in real time from different locations to enhance decision-making
and ensure project deliverability [83]. BIM is also useful in terms of reducing the data
size, because the volume of data collected from construction projects is massive due to the
complexity of their designs and construction activities [84]. However, with the support of
BIM, the volume of data that is related to the design of a three-story building can easily
reach 50 GB [85], which burdens the data-interoperability and data-transfer processes.

Alongside all the benefits stated, it is important to mention the main challenge that
BIM faces, which is related to the full implementation of this technology in all phases of
the design, construction, and operation of buildings [86]. Moreover, the biggest constraints
on the mainstream application of BIM refer to the lack of scalability, interoperability,
and support for remote collaboration [87,88]. Several studies have been carried out on
the use of BIM in the construction industry, e.g., on cloud-BIM [83] and also linking
BIM to construction lifecycle phases [89]. Furthermore, a paper presented the linkage
between sensor and BIM by using IFC (industry foundation classes) [90]. Additionally,
research was conducted on the development of construction industrialization based on
BIM methodology, and a navigation framework was proposed for the inclusion of BIM
and factory equipment to simulate a digital twin factory [91]. Another interesting paper
is [92], wherein the potential of BIM and the 4IR to change the future of the construction
environment was discussed.

In the context of recent trends of BIM development, it is important to mention inte-
grated building information modeling (iBIM). According to [93], the main aim of iBIM is
to integrate BIM with other innovative technologies and managerial approaches during
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the project life cycle. To enhance the project performance, BIM can be integrated into three
stages of the project: the preconstruction phase, the construction phase, and the facility
management phase. The preconstruction phase concerns the integration of BIM with
materials tracking and logistics systems to benefit from supply chain management [93]. An
example of such integration is presented in [94], in which the potential of BIM to provide
contextual information mapping across processes was observed. It was also stated that the
integration of design, manufacturing, and construction processes, with transparency of
information about material resources across these processes, would bring about significant
benefits for all stakeholders within the supply chain. The integration of BIM and GIS was
used in the planning and designing phase of the building for activities such as construction
site selection, energy design, structural design, performance evaluation, etc. [95]. Another
interesting example of integrating BIM and GIS in the planning phase of construction is a
case study that presented a BIM–GIS system for visualizing the supply chain process and
the actual status of materials through the supply chain [96]. Furthermore, multiple studies
regarding the integration of BIM and RFID for various purposes were conducted [97–100].
In the construction phase, conceptual frameworks have been researched for the integration
of BIM and AR [101,102]. It was investigated how BIM can be extended to the site via AR
to improve the way information is accessed [103]. Furthermore, BIM can also contribute
to quality management by integration with Light Detection and Ranging (LiDAR), with
the purpose of better evaluation of on-site conditions and achieving real-time construction
quality control [104]. The last phase is the maintenance/operation phase, in which the
integration of BIM and LiDAR has also found its application; an example is the automated
inspection of the quality of prefabricated houses [105]. This phase reflects the integration
of BIM and AR, which is extremely useful in the field of facility management; an example
is a BIM2MAR method tested in a facility management pilot study [106]. The versatile
possibilities of BIM application in the construction industry could be the foundation for
the change that the construction industry needs.

4.2.3. Internet of Things (IoT)

A technology that brings physical objects into a cyber world that is based on devices or
technology such as sensors, actuators, RFID, video cameras, and laser scanners is called the
IoT [76,107]. According to [108], the IoT is a set of four different layers, i.e., an application
layer, a perception layer, a network layer, and a physical layer. The layer that refers to
smart cities, smart transport, and intelligent homes is the application layer. The perception
layer refers to technologies that communicate with other objects, like sensors and devices.
Furthermore, the network layer refers to the network communication and the component
of network coverage, while the physical layer refers to the hardware and includes smart
appliances and other devices. The use of the IoT in the construction industry has many
possibilities and benefits, mostly focused on fast decision making due to the availabil-
ity of real-time data analytics [109,110]. In addition, IoT technologies and applications
could transform the construction, maintenance, and operation phases by maximizing user
comfort, security, and energy saving by diverse intelligent solutions [111]. However, it is
believed that most current IoT solutions in the construction industry are isolated for spe-
cific applications but lack coordination over the entire construction process [76]. Research
carried out and presented in [112] determined the dominant challenges to applying IoT
in the construction industry. It was found that these challenges are a lack of safety and
security, a lack of documented standards, a lack of awareness of the benefits, the improper
introduction of IoT, and a lack of robustness in connectivity. These challenges have also
been reported in other papers [113–115].

Despite the mentioned challenges, the IoT has been widely accepted in the construction
industry. For example, by taking advantage of the IoT, the real-time data collected from
a construction site drives BIM models to monitor the construction process [116]. An
interesting application of IoT in construction is a prototype that was designed for an
IoT-based construction site safety management system [117] that can be operated at a
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low cost independently of the size of the construction site. Additionally, a model for
construction site safety monitoring [118] was developed that identifies real-time safety
problems and also stores data for future training and improvement. The same paper
provided a cost comparison that showed that an IoT system can provide around a 70% cost
savings in comparison to traditional systems. Another IoT-based system regarding worker
safety with real-time alarming, monitoring, and positioning strategies was introduced
in [119], and a safety recognition service using an IoT sensor network in [120]. A commonly
reported method is the establishment of a mapping structure between the IoT data and
BIM data [76]. The IoT can also be used for integrating environmental and localization data
in BIM [121]. Additionally, the IoT can be used in conjunction with the “cloud” to achieve
real-time data transmission for monitoring systems, as presented in [122,123]. A similar
approach based on the BIM platform for the on-site assembly of prefabricated construction
was provided [124], which is enabled by the IoT, while an example of IoT utilization for
real-time decision making in repetitive construction operations was presented in [125].
The mentioned applications of the IoT in the construction industry show the versatile
benefits it can bring to the construction industry. However, as mentioned earlier, the IoT
is a multilayer system that requires wider collaboration for reaching its potential. It is
important to research its collaboration with other drivers such as BD.

4.2.4. Big Data (BD)

Due to the rapid development of information and communication technologies, the
construction industry is entering the BD era. The term BD can be seen as a rebranding
of the term data mining, with a focus on larger and more diverse datasets and sources,
with data mining being the technology of discovering structures and patterns in large
datasets [126]. BD is believed to be induced with the use of technologies such as radio
frequency identification (RFID), and sensor networks [84,127]. Consequently, it is becoming
possible to easily collect and effectively use the massive volumes of data that are generated
by various design and construction activities to enhance the performance of construction
projects [128]. The significance of BD is not to manage a massive amount of data, but to
extract valuable information from them.

Referring to the construction industry, BD presents data generated from the life cycle
of the building or structures, which includes the phases of planning, design, tendering,
construction, checking, and operation management [76]. BD analysis is valuable for more
efficient project delivery and for all project stakeholders. Privacy and security issues, skill
requirements, data access, sharing of information, and storage and processing issues have
been recognized as some of the main challenges of BD [129]. A detailed overview of issues
in the field of privacy and security of BD was provided in [130]. Agrawal et al. [131]
listed the heterogeneity and incompleteness of data, the scale of data, and the timeliness of
analyzing data as the main challenges of BD. Methods of analyzing BD include statistical
analysis, online analytical processing (OLAP), and data mining [76]. Besides the expected
growth of data from construction business operations, automation of construction processes,
safety monitoring/control, resource management, etc. will also lead to significantly more
data being generated in the near future [128]. For instance, images from construction
activities can be used to identify unsafe behavior of construction workers, with the purpose
of reducing the occurrence of safety accidents [132]. Furthermore, multiple studies have
reported that BD has the potential to generate immense value for construction projects while
effectively improving project performance [84,127]. In addition, based on machine learning,
BD can be utilized to accurately predict the performance of construction projects and detect
possible uncertainties in project outcomes while still at the early design stage [133]. By
mining cost-related data collected from previous projects, strategies can be implemented to
control future project costs [84]. An interesting field worth mentioning is the utilization
of BD to support smart cities [134]. Lu et al. [135] presented the possibility of using BD in
construction waste management and even used BD analytics to identify illegal construction
waste dumping [136]. Moreover, it was concluded that an accurate analysis of BD makes it
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possible to discover new phenomena characteristic of the project, which can help reduce
risks in project management [137]. Considering the above, BD can be seen as a crucial
component of Construction 4.0 due to the increasing amount of data generated by new IoT
devices and BIM-related information.

4.2.5. Additive Manufacturing (AM)/3D Printing

During the past decade, the field of AM, and in particular 3D printing, has gained
immense attention in terms of industry usage, technological development, and consumer
popularity [138]. It is believed that the first patent for 3D printing dates back to 1984 [139],
and experimental applications of AM in the construction industry started appearing in
the late 1990s [140]. The paradigm of AM is that a structure can be built by adding an
elemental material in a way that can easily be automated [140]. It can also be considered as
a process that is based on a three-dimensional digital model that uses automatic technology
to create physical objects layer-by-layer without human intervention [141]. If we compare
additive with traditional manufacturing, AM offers new possibilities for the design and
development of products [49]. It is believed that AM can be a vital component of the 4IR or
smart manufacturing due to its high capability as a nontraditional manufacturing approach
for mass customization [142]. When talking about construction, AM has the potential
to help the construction industry to transition into a technically advanced sector [143],
which is proven by the fact that the implementation of AM in the construction industry
has resulted in various technical breakthroughs and improvements in construction output
efficiency [34].

Perhaps the first case of AM in the construction industry was reported in 1995, when
the first construction-scale AM method called “Contour Crafting” (CC) was patented
at the University of Southern California [144]. There are various terms encountered in
the literature that refer to AM in the construction industry, so printing objects roughly
above one cubic meter in volume is referred to as “large-scale AM,” or popularly as
“large-scale 3D printing” [145]. The International Organization for Standardization and
the American Society for Testing and Materials classified AM into seven categories: vat
photopolymerization, material jetting, binder jetting, material extrusion, powder bed fusion,
sheet lamination, and directed energy deposition [146,147]. However, to date, the processes
that are being used for applications in the construction industry include extrusion-based
processes and binder jetting [148]. There are various applications of AM in the construction
industry and there are even some records claiming different levels of success in printing
buildings. For example, two cases of 3D-printed bridges, with one printed from metal and
the other from concrete, have been reported [149]. A house in Russia was printed using
mobile 3D printing technology, and the building envelope was created in 24 h [150]. In
2015, a five-story apartment building with an area of about 1100 square meters, which
is considered the highest 3D-printed structure, was finished [151]. Furthermore, in 2016
the same authors presented the first 3D-printed office in the world [152]. It is suggested
that AM could contribute to the construction industry by reducing the exposure of on-
site workers to harsh environments and by automating some construction tasks [153].
The main benefits of 3D printing were reported in [149], i.e., new possibilities of design,
detailed construction accuracy, reduction of waste, increased safety of workers, possibility
of combining different types of materials, and the possibility of printing mechanically
connected parts. Additionally, the use of AM in construction could lower the demand for a
skilled workforce. On the other hand, imperfections, costs, production duration, limitations
of materials, and spatial limitations have been mentioned as the major challenges of
AM [142]. The main weaknesses of 3D printing are recognized as possible errors in
digital model creation, inappropriate materials, lower production speed, the high price
of new technology compared to traditional processes, different mechanical properties
caused by material layering, poor surface quality, and the lack of technical standards and
regulations [149].
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5. BIM 4.0: Synergies of BIM with Other Main Drivers in Construction 4.0
5.1. BIM and BD

The essence of BIM can be found in data and information, which explains why BD
can be used in the BIM process since BIM will continue to develop. However, a single BIM
model is not sufficient to exploit the benefits of BD, and it can take a whole repository of
BIM models to be mined for information extracting [154]. Therefore, an emerging trend is
the striving for BIM to transfer from personal computers to cloud BIM with the purpose of
the project’s stakeholders being able to work on BIM from anywhere using their portable
devices and access any information necessary for the project [155]. This would enable
the data from the cloud sourcing to stay in the BIM and provide support for decision
making on a project. Still, the wide usage of BIM is characteristic of the preconstruction
stages, while it progressively decreases towards the later stages of a project [156]. Due
to the considerable amount of data contained in the BIM model and projects, it can be
predicted that BIM could become the center for BD [157,158]. With the accumulation of
such amounts of data, the adoption of BIM may be crucial for the creation of a resource
for BD analysis [155]. Furthermore, the BD that is contained in BIM can be considered
a gold mine for companies to exploit for better decision making and predicting [155].
However, the increasing size and scope of the BIM models are starting to restrict the
possibilities of traditional systems being used for storing and processing BIM data [84].
Thus, many cases are going to require customized means of storing and processing BIM.
Therefore, BIM-specialized BD storage and processing platforms can be expected [84]. A
cloud-based BIM has the potential for providing real-time quantity information due to the
advancements of BIM and BD and could stimulate the usage of BIM in the construction
phase [155]. Thus far, BIM has been considered to contain only information regarding
construction, but the emergence of linked building data is slowly changing this widely
accepted attitude [159]. Interesting examples can be found in the connection of BIM with
Linked Open Data datasets that contain information on weather, flooding, population
density, road congestions, etc. [159,160]. Furthermore, the possibility of using BD in
BIM for construction waste minimization was analyzed [161]. A study was conducted
in which the need for integrating BIM and BD for maintenance of the lifecycle data and
maintenance of the assets and conditions of a highway was stated [162]. Another example
was presented in [163], where integration provided cloud computing for the project’s
members for the facility management. Additionally, a cloud-based system framework
was proposed for viewing, analyzing, and storing massive BIM models, and the system
was based on Bigtable and MapReduce [164]. The problem with adopting prefabricated
construction, i.e., insufficient information for reviewing prefabrication alternatives and
choosing suppliers, was recognized in [165], and a system for integrating BIM and BD with
the purpose of connecting clients with information about the time and cost of prefabricated
elements production was presented. These kinds of integrations of BIM and BD are leading
to Big BIM Data, which justifies the emergence of BD as a specialized area of BIM [84].
Additionally, the integration could result in benefits such as better decision making, more
efficient modeling and design, failure detection, damage detection, and safety and activity
monitoring [84]. Considering the abovementioned applications, the integration of BD with
BIM clearly has the potential to reduce the size of data, which can then be used for various
purposes in BIM such as weather forecasting, facility management, supplier and alternative
selection, and the overall improvement of a construction project.

5.2. BIM and IoT

Until recently, the project’s stakeholders would enter information regarding their part
of the project, i.e., input parameters, in data libraries. This is considered a passive BIM
approach [166]. An active BIM approach aims at dynamic data exchange among BIM and
sources of input parameters. Active BIM is considered the approach where the integration
of BIM and IoT can find application, and a few examples of such integration are presented
in the following.
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A software architecture for the integration of heterogeneous IoT devices with BIM and
GIS was presented. The information from the IoT devices provided the BIM model with
actual data and also evaluated the validity of it [167]. A similar example of the integration
of environmental and localization data in a cloud-based BIM platform using IoT and
BIM was introduced and the platform was validated in two case studies for construction
and facility management and operation [121]. Furthermore, an approach using BIM and
IoT for construction site management was presented whereby the principle was based
on the connection of BIM through a VPL (visual programming language) to a database
where information received from the sensors at the site was stored [168]. Such integration
could increase productivity and decrease construction duration and costs due to real-time
on-site information monitoring. Integration of BIM and the IoT platform for projects
involving prefabricated houses was developed. Stakeholders’ demands were collected
and analyzed and then RFID technology was used for collecting real-time data from the
site [124]. Additionally, a system for visual utility tunnel environmental monitoring based
on the integration of BIM and IoT was developed [169]. With smart houses becoming
the standard, a case study was presented in [170], where the geometry of a building was
fundamental in which IoT devices were integrated. It was found that additional software
for Autodesk Revit is necessary to be able to visualize and analyze data from the sensors
on the 3D model. A paper reviewed all sorts of domains regarding the integration of BIM
and IoT, such as construction operation and monitoring, health and safety management,
construction logistics and management, facility management, and the methods for its
realization [171]. An interesting study was conducted [172] in which the authors integrated
BIM and IoT using sensor data and compared it to the model for indoor environment
monitoring and comfort analysis. In addition, the system user could judge whether the
thermal comfort level had met the standards and the data could guide future equipment
choice. Due to the fact that IoT is an emerging technology, and the number of its devices is
rapidly growing, the mentioned applications have taken place in the past four years, and it
is anticipated that they will continue to develop at an exponential pace.

6. Discussion

The literature review presented in this research resulted in a total of 172 referenced
sources. A standard software tool for constructing and visualizing bibliometric networks,
i.e., VOS viewer software, was used to present the keywords referenced in [23]. Figure 2
presents a network map of keywords that appeared in the references based on text data.
The keywords were extracted from the abstract and title field of the references applying
the full counting method, and with a determined minimum of three occurrences. There
were 211 such terms, but the default choice was set to 60% of the most relevant terms, so
there were 127 terms analyzed. A further output of the reference network presentation is
shown in Figure 3, i.e., mostly referenced journals. This graphical representation supports
the relevance of referenced findings, highlighting the journals indexed in Web of Science
with a high quantitative bibliometric.

The 4IR differs from the previous industrial revolutions mostly by presenting integra-
tive polyvalent technologies. Therefore, the 4IR already has and will have a much wider
scope than the previous industrial revolutions. Even though the 4IR has already taken
place in many countries, in developing countries the 3IR has not still fulfilled its potential
and it is uncertain when or if the 4IR will appear in those countries. The development
of 4IR technologies has stimulated many changes in all sorts of industries, including the
construction industry.

Throughout this extensive research review, it is clear that the 4IR is being accepted
in the construction industry since the number of papers and the number of presented
applications of 4IR technologies in the construction industry is continuously growing.
Consequently, the drivers of the 4IR are found to be the drivers of Construction 4.0, except
for BIM, which is dominant for the construction industry itself. Although induced by the
4IR, Construction 4.0 is conceptually more focused. An extensive research on the drivers of
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Construction 4.0 was undertaken. The most important are presented in this paper, with
their benefits, challenges, and possibilities of application. The main drivers of Construction
4.0 were found to be BIM, BD, and IoT since they are the keywords that appeared most
often in the analyzed papers, as confirmed by the visual representation in Figure 4. These
technologies have provided the basis for most of the current advances in the construction
industry.
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Using VOS viewer software, a map based on text data was created to give insight
into the main Construction 4.0 drivers. Figure 4 is related to Figure 2, presented in the
section on research methods, but with an increased number of term occurrences. The
keywords were extracted from the abstract and title field with a full counting method,
and the minimum number of occurrences of a term was five. There were 211 such terms,
but the default choice was set to 60% of the most relevant terms, which resulted in 127
analyzed terms. After determining the main drivers of Construction 4.0, their synergy
with BIM was analyzed in order to determine whether it will enable their—but, most
importantly, BIM’s—full potential in all phases of the construction industry. Despite the
potential that Construction 4.0 shows throughout its technologies and application to trans-
form the construction industry, most of these technologies are still mostly represented
in the preconstruction phase of the project’s lifecycle, in which their use is continually
developing. Consequently, this is also the case for BIM, which is used worldwide in the
design phase, but still lacks application in the later phases of a project’s lifecycle, from
which the construction industry and the project’s performances could undoubtedly benefit.
The reason behind this can be found in the well-known traditionalism and resistance of the
construction industry to changes and innovations, which are mainly caused by traditional
practices and the lack of a skilled workforce. The ISO 19650, namely parts 3 and 5 (i.e., ISO
19650-3 Organisation of information about construction works—Information management
using building information modelling Part 3:—Operational phase of assets; ISO 19650-5
Organisation of information about construction works—Information management using
building information modelling—Part 5: Specification for security-minded building infor-
mation modelling, digital built environments and smart asset management) backs up the
development of BIM in terms of intelligent information systems with a clear intention for
increasing the automation and digitalization of the construction production.

The integration of CPS and DT offers a way for construction project teams to bridge the
gap between virtual models and physical construction, creating a cyberphysical production
system. In this context, the built environment becomes a rich area for the application of the
CPS and DT framework for smart buildings, cities, and infrastructures, colloquially called
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cyberphysical environments, where the built environment becomes increasingly intelligent
and digitally connected.

7. Conclusions

This paper presents a literature review of the industry pre-4IR, the 4IR itself, Con-
struction 4.0 technologies, its origin and its applications, and the synergy of the main
Construction 4.0 drivers, i.e., the synergy of BIM with IoT and BD.

With the aim of answering RQ1, Section 3.2 introduced an explanation of the 4IR and
Section 4.2 gave the main Construction 4.0 technologies. It was found that the Construction
4.0 drivers are indeed the drivers of the 4IR, i.e., they originated from the 4IR, except
for BIM, which is characteristic for the construction industry. Most of these technologies
did exist for themselves, but it was the concept of the 4IR that pushed them into wider
application and gave them more popularity by increasing interest in the whole concept.

To answer RQ2, each of the Construction 4.0 technologies was analyzed in Section 4.2
and a visual representation was made (Figure 4). It can be concluded that BIM, BD, and
IoT are the most represented, i.e., the most significant Construction 4.0 drivers. Ultimately,
it was concluded that BIM, IoT, and BD are the main drivers of Construction 4.0. This pro-
vided a basis for answering RQ3, in which the aim was to determine the directions of BIM
development with regard to the main Construction 4.0 drivers and whether Construction
4.0 is what will push BIM into wider application. The motivation for this question was
found in the fact that BIM is mostly applied in the design phase of construction but lacks
application in the later phases of a construction project.

In order to answer RQ3, Section 5 was dedicated to the integration of BIM with IoT
and BIM with BD as the main Construction 4.0 drivers. It was found that this integration
can contribute to the application of BIM itself and the whole Construction 4.0 concept since
BIM is becoming the standard for the construction industry. IoT connects all necessary
devices for effective monitoring of all project phases, and BD is a requirement for analyzing
the huge amounts of data generated in larger construction projects. Improvements in terms
of increased productivity and decreased construction duration and costs are anticipated
while increasing safety. The reported synergies of BIM with Internet-linked open datasets
resulted in real-time information on weather forecasts, flooding risks, population density,
road congestions, waste minimization, facility management, decision making, efficient
modeling, failure and damage detection, and construction site monitoring. Integration
could improve the performance of real-time monitoring while increasing the quality of the
entire construction project by enabling more information regarding all project phases.

This provided a basis for answering RQ4, in which the aim was to determine in which
phases of the construction project’s lifecycle the benefits of Construction 4.0 are most evi-
dent. Unfortunately, the answer to this question is still the design (preconstruction) phase,
which is continuously developing and becoming more automated, as can be concluded
from all the mentioned applications of Construction 4.0 technologies in the construction
industry in this paper, while the construction phase still lags behind in terms of its imple-
mentation. It is uncertain whether this will change despite the numerous possibilities that
BIM offers since the construction industry is resistant to change and does not easily give
up established traditional practices. However, BIM is arguably adopting Construction 4.0
requirements and as such could be recognized as BIM 4.0.
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