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Faculty of Civil and Architectural Engineering Osijek, Josip Juraj Strossmayer University of Osijek,
Vladimira Preloga 3, HR-31000 Osijek, Croatia; radic@gfos.hr (I.R.); bojan.bisercic@gmail.com (B.B.)
* Correspondence: tdoksanovic@gfos.hr

Abstract: Tapered steel members are widely used in structural and architectural engineering for
their efficiency and adaptability, allowing for optimal material usage tailored to specific load levels.
However, their complex stability characteristics have hindered their representation in modern design
standards like EN 1993 and AISC 360. Existing buckling solutions are limited, and practical research is
lacking. This paper comprehensively examines the buckling resistance calculation methodologies for
members with variable cross-sections, addressing discrepancies across the methodologies, particularly
regarding the tapering ratio. A parametric analysis and numerical simulations were conducted to
evaluate each methodology’s applicability, emphasizing the need to balance computational simplicity
and accuracy. The study primarily focused on tapered steel beams, considering the different tapering
ratios and loading conditions. The findings provide valuable insights into the buckling behavior
in tapered members and the practical implications for real-world structural designs. By examining
the available analytical methods for calculating the buckling resistance of tapered elements, a better
understanding of how to accommodate the non-uniformity of a member was gained, enabling
an overview of the variance in the determined resistances and an assessment of the method’s
applicability. Moreover, specific calculation methodologies were found to have shortcomings that
require modifications for a more accurate parametric analysis. This research contributes to the field
by bridging the gaps in modern design standards and enhancing the understanding of buckling in
tapered steel members.

Keywords: variable steel members; design; stability; tapering ratio; structural efficiency

1. Introduction

Tapered members (Figure 1), beams, and columns with varying cross-sections are
widely used in industrial and high-rise buildings for structural and architectural pur-
poses [1]. Frequently seen in malls, halls, and airports, they are efficient in material usage,
adaptable to load levels, and capable of forming various optimal shapes. Commonly
used where bending loads are dominant, their designs can be adjusted according to the
bending moment diagram. A taper is created by angling a cut on the web of a wide-flange
beam, then rotating one segment and joining the webs by welding or by constructing
the member directly from steel plates. Timoshenko and Gere [2] also endorsed them for
columns, considering buckling-induced bending moments. They are economically viable
for compression-loaded members, particularly when significant bending moments must be
transferred at the column—beam connection.
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The early work on columns with varying cross-sections is linked to Lagrange in 1770
and later Euler. Research on the elastic buckling strength of tapered columns intensified
in the 20th century due to Timoshenko [2,3] and Newmark [4], leading to successive
approximations for determining critical loads combined with finite difference expressions.
This resulted in efficient solutions for determining the column buckling strength. Significant
work on steel frames using tapered I-members began with the Column Research Council
and Welding Research Council in 1966 [1] as a continuation of the research at Columbia
University led by Butler [5,6]. The experimental data from Prawel et al. [7] led to the
practical design procedures for tapered columns by Lee et al. [8], using an equivalent
uniform member to determine the buckling resistance. This procedure was adopted into
the AISC [9] specifications but was removed in 2005 to encourage further development
of the guidelines for tapered I-shaped members. A similar approach was studied by
Hirt et al. [10] based on the concept of a prismatic column with the same length but with
an equivalent moment of inertia.

Experimental studies of I-shaped tapered members grew in subsequent years, with
crucial contributions from Salter et al. [11] and Shiomi et al. [12,13], but only for compact
members. Forest et al. [14] executed research to evaluate the design provisions made by Star
Building Systems and the procedure by Lee et al. [15] concluded that no design provisions
accurately predicted the frame resistance for all the loading combinations. The pilot study
conducted by White et al. [16] evaluated the AISC [17] stability checks for tapered members,
proposing several methods for determining the elastic buckling resistance.

Recent research based on the finite element method (FEM) has shown that using
uniform finite elements to analyze members with variable cross-sections (by dividing
the member into smaller areas) can lead to significant errors when torsion influences the
behavior, as found in the works of Ronagh et al. [18,19] as well as Boissonnade et al. [20].

Baptista et al. [21] were among the first to address the lack of design guidelines for
tapered members in EN 1993 [22], proposing a procedure based on the existing provisions
for uniform columns. Similar concepts were introduced by Ermopoulos [23], but they were
more complex and not readily applicable to EN 1993. Ermopoulos [24] further developed
this procedure to include the possibility of encompassing columns with a variable axial
force per length.

More recent research on the design of tapered members related to flexural buckling
was conducted by Simões da Silva et al. [25] and Marques et al. [26]. They proposed a
design procedure for tapered members based on FEM parametric analyses and the general
method available in EN 1993-1-1 [22]. Quan et al. [27] proposed an approach which used
the geometric and material nonlinearity, considering the imperfections, and defined the
member’s ultimate strength by either the strain limit or peak load factor. Bai et al. [28]
proposed a generalized imperfection shape function for the practical design of tapered
I-section columns, and using this function, a new beam—column element was developed
for tapered symmetric I-sections. Abdelrahman et al. [29] proposed generalized line-
element formulations for the geometrically nonlinear analysis of tapered steel members
with nonsymmetric cross-sections. Chen et al. [30] introduced an analytical model for
the second-order direct analysis of steel structures with tapered members, allowing for
symmetric and asymmetric variations. Kucukler et al. [31] developed a stiffness reduction
method for the in-plane design of web-tapered steel structures fabricated by welding
individual plates. Other notable contributions included those by Šapalas et al. [32] and
Serna et al. [33], where each introduced new design concepts for tapered members.

Trong-Ha Nguyen et al. [34] developed an artificial neural network model to predict the
critical buckling load of the web-tapered I-section steel columns, and the results of the pro-
posed model were compared with approaches according to [8,10,21,26]. The developed model
predicted the critical buckling load of the columns more accurately than the existing equations.

Ibrahim [35] and Mahini [36] proposed approaches though which it is possible to
determine the buckling length of columns of variable cross-sections by multiplying the
length by the K-factor.
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As a particular type of tapered structure, acoustic black hole (ABS) structures have been
extensively studied recently [37–39]. Buckling analyses in structural engineering have seen
applications beyond traditional materials and shapes. For instance, recent research [40–43]
presented the mechanical buckling and bending of stiffened functionally graded material
(FGM) plates and beams. The studies focused on the influence of the material distribution,
thickness-to-width ratio, and stiffener parameters on the buckling characteristics of the
stiffened FGM plates and beams. Although this work differed in material composition
and configuration, it highlighted the importance of considering various parameters in the
buckling analysis, a theme central to the study of tapered steel members. The structural
analysis of variable thickness plates with shear connectors has been a subject of interest in
recent research.

Despite being used for over 50 years, the design procedures for tapered members are
not implemented in modern steel design standards (EN 1993 and AISC 360). Such a state can
be attributed to the complexity of describing the stability compared to uniform members
due to shifts in the bending, torsional, and axial stiffness with cross-section changes.
Analytical solutions for buckling tapered compression members are only available in the
elastic area for simple cases. The calculation of non-uniform members’ buckling requires
numerical and energy methods. There is a lack of research on practical structural design
problems for non-uniform columns, and those that do exist often are not practical enough
for everyday engineering use. Considering the complexity and engineering applicability,
there is a need for further evaluation of the available design procedures.

The paper describes the available analytical methods for calculating the buckling
resistance of tapered elements. Subsequently, a parametric analysis was conducted using
the ANSYS 2019 computer program for the selected slenderness and tapering ratios to
assess the accuracy of each method. The paper also evaluates the applicability of each
method, considering the number of required parameters and the deviation of the calculation
results compared to the reference methodology.

2. Available Stability Design Procedures for Tapered Members
2.1. Lee, Morrell, and Ketter [8]

The approach developed by Lee et al. [8] estimates the effective length of a tapered
member by changing its length to obtain an equivalent uniform member. The uniform
member has the properties of the smallest cross-section of the non-uniform member, and
the properties of the newly formed member are then used in the standard Equation (1) for
elastic buckling.

Ncr,taper =
π2 · E · Iy,min

(g · L)2 (1)

where Ncr,taper is the critical force of the elastic buckling of the non-uniform member, E is
the modulus of elasticity, Imin is the moment of inertia of the smallest cross-section about
the stronger axis of the non-uniform element, and gL is the modified length of the uniform
member. By rearranging Equation (1), it is possible to obtain the length change factor for a
pin-ended member, g, depicted by Equation (2).

g =
π

L
·
√

E · Iy,min

Ncr,taper
(2)

In Equation (2), all the variables are known except for Ncr,taper, and the authors have
provided a solution for Ncr,taper for the most commonly used cross-sections. Considering
various lengths and degrees of shape change, they arrived at Equation (3) for calculating
the length change factor, g.

g = 1.000 − 0.375 · γ + 0.080 · γ2 · (1.00 − 0.0775 · γ) (3)
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where γ is the degree of non-uniformity (tapering ratio), which considers the ratio of the heights
of the largest hmax and smallest cross-section of the element hmin, using Equation (4).

γ =
hmax

hmin
− 1 (4)

The equation for the length change factor, g, can be determined based on the curve
fitting procedure to the representative test results of the members with five different cross-
sections. The functional relationship of the length change factor, g, and the degree of
non-uniformity, γ, according to Equations (3) and (4), can be determined by a third-degree
polynomial. For the values of the tapering ratio γ greater than 7.75, the values of the length
change factor become negative. Although such values of the tapering ratio are hard to
reach, it is not possible to perform a resistance calculation of a tapered element even for
values of the tapering ratio greater than 6.5 due to a pronounced drop in the value of the
length change factor with the increase in the degree of non-uniformity, γ. The advantage
of the approach is its simplicity of use and the possibility of application in the existing
regulatory methodology, thereby simultaneously enables the consideration of imperfections
and advancements in this area.

The procedure for implementing the buckling calculation, following the methodology
proposed by Lee et al., into the EN 1993 standard flexural buckling design is relatively
straightforward as the modification is based on the elastic critical force (Figure 2).
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2.2. Baptista and Muzeau [21]

Baptista et al. [21] solved the problem of calculating the buckling resistance of the
tapered elements, Nb,taper,Rd, by modifying the existing expression for determining the
buckling resistance, according to EN 1993 [22], Nb,Rd, with the coefficient k (Equation (5)),
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which depends on the slenderness of the member with the smallest cross-section and the
degree of non-uniformity (Figures 3 and 4).

Nb,taper,Rd = k · Nb,Rd = k · χmin
Amin · fy

γM1
(5)

where χmin is a reduction factor that accounts for the loss of stability and imperfections of
the element, Amin is the area of the smallest cross-section, fy is the steel yield strength, and
γM1 is a partial factor for the stability calculations.
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The k-factor is calibrated only up to a specific value of the tapering ratio γ = hmax/hmin,
which must not exceed 6.67 for this methodology. A linear interpolation must be performed
for all the values of the tapering ratio between the given curves. In addition, for the
slenderness values up to 0.6 and after 3.0, the distribution of the k-factor is unknown, which
significantly limits the application of the method. This methodology can be considered
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conservative as the entire calculation is based on the properties of the smallest cross-section,
thereby assuming the same yield in all nominal cross-sections along the length of the
member. In addition, this methodology’s reliance on graphically determining the factors
for an increasing resistance to buckling represents an awkward solution that prevents
engineers from fully digitizing the calculations and allows for errors. The advantage of
this approach is undoubtedly the relative simplicity of use due to the grounding of the
analytical part of the methodology on a normative basis.

2.3. Šapalas, Samofalov i Šaraškinas [32]

Šapalas et al. [32] presented an approach for calculating the non-uniform member
subjected to an axial compressive force based on the properties of an equivalent cross-
section. Their approach was independent of the standards because the entire calculation
uses the standard procedure for a member of the same length as the non-uniform one but
with a uniform equivalent cross-section. Specifically, the equivalent height is calculated
after calculating the calibration factor, αn, which depends on the ratio of the end moments
of inertia of the non-uniform member, Iy,min/Iy,max. This equivalent height is then used to
obtain the properties of a replacement uniform element. Figure 5 provides a summarized
representation of the described calculation process.
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The values of the calibration factor, αn, as shown in Table 1, were obtained based
on the results of the numerical simulations of the buckling of non-uniform compressive
members and are based on Equation (6).(

π

µy · L

)2
· E · Iy,taper = αn ·

(
π

µy · L

)2
· E · Iy,max (6)

where Iy,taper is the moment of inertia of the equivalent member and Iy,max is the moment of
inertia of the largest cross-section of the non-uniform element.

Table 1. Values of the calibration factor αn [25].

Iy,min/Iy,max 0.010 0.050 0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900 1.000

αn 0.563 0.629 0.676 0.740 0.788 0.829 0.864 0.895 0.924 0.951 0.976 1.000

Although the calculation of the buckling resistance according to this methodology
is based on a section that can be considered critical, the resistance value according to the
methodology offered by the standard cannot be greater than the resistance of the smallest
cross-section. Therefore, this only extends to the area of non-dimensional slenderness in
which the value of the resistance reduction factor equals one. Accordingly, although Šapalas
et al. [32] did not mention the calculation process after determining the critical buckling
force in their work, the applied methodology (Figure 5) assumes that the equivalent cross-
section is used to determine the reduction factor χ, and then the obtained reduction factor
is applied to reduce the resistance of the smallest cross-section in the non-uniform member.
This way, it is possible to obtain realistic resistance values, considering that the smallest
cross-section limits the resistance.

2.4. Smith [44]

Smith [44] described the energy method for calculating non-uniform compressive
elements with a regular change in cross-section. In the appendix of his work, Smith [44]
provided a display of a factor for adjusting the critical buckling force, factor m, which
depends on the ratio of moments of inertia of the smallest and largest cross-sections of the
non-uniform element.

According to Smith, following the proposed procedures, the basic expression for the
critical force takes the form of Equation (7).

Ncr,taper =
m · E · Iy,max

L2 (7)

where m is the factor for adjusting the critical buckling force, Iy,max is the moment of
inertia of the largest cross-section, and L is the buckling length of the member around the
corresponding axis. After calculating the critical buckling force according to Equation (7), a
further procedure for calculating the buckling resistance is performed using the properties
of the largest cross-section of the non-uniform member. Figure 6 provides a summarized
representation of the calculation process, according to this methodology.

The values of the factor m depending on the ratio of moments of inertia, as proposed
by Smith [44], are shown in Table 2.
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Table 2. Values of factor m [28].

Cantilever
Iy,min/Iy,max 0.000 0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900 1.000

m - 1.202 1.505 1.710 1.870 2.002 2.116 2.217 2.308 2.391 π2/4

Pin-
supported

element

Iy,min/Iy,max 0.000 0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900 1.000

m - 4.808 6.020 6.840 7.480 8.008 8.464 8.868 9.232 9.564 π2

The fact that Smith [44] offered values for the factor m only to the value of the ratio of
the moments of inertia of 0.1 dramatically limits the application of this method. Namely,
with the increase in the tapering ratio (hmax/hmin), there is a pronounced increase in the
moment of inertia.

The paper [44] did not discuss calculating load-bearing capacity after determining the
critical buckling force. The methodology (Figure 6) assumes that the highest cross-section
determines the reduction factor χ. The resistance reduction using the calculated reduction
factor is then performed based on the smallest cross-section in the non-uniform element.
In addition to the fact mentioned in Section 2.4 that the area of the smallest cross-section
certainly limits the resistance, this intervention maintains its simplicity. Namely, at higher
tapering ratios, the sections of greater heights enter the cross-section class 4. However, their
effective area is slightly larger than the area of the smallest cross-section, making resistance
gains negligible at the expense of a more complex calculation. In addition, considering
that the effective area only extends to the area of slenderness within which it applies, the
reduction factor is equal to one or the curve reduction factor/non-dimensional slenderness
slightly translates along the axis of non-dimensional slenderness.
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2.5. Serna, Ibáñez i López [33]

The approach shown in [33] and depicted in Figure 7 represents a practice-applicable
way for addressing the problem of buckling of non-uniform elements, considering that
the calculation procedure presented in it also anticipates the possibility of changing the
level of axial force along the length of the member. The approach is based on the fact that
a non-uniform element loaded with a variable (or uniform) axial force is replaced with a
uniform one with the properties of the smallest cross-section, loaded with an equivalent
uniform axial force. According to Equation (8), this methodology assumes that the actual
critical buckling force of a non-uniformly loaded uniform member is equal to the product
of a particular coefficient C and Euler’s critical force.

Ncr,taper = C · NE = C ·
π2 · E · Iy,min

L2 (8)

Coefficient C considers the non-uniformity of the internal compressive force and
cross-section and can be calculated using Equation (9).

C =
21 · Nmax

4 · (Nx=0 + Nx=L) + 6 · (Nx=L/4 + Nx=3L/4) + Nmax
(9)

where Nmax is the highest level of axial force in the member, Nx = 0 and Nx = L are the levels
of axial force at the ends of the member, and Nx = L/4 and Nx = 3L/4 are the levels of axial force
at L/4 and 3L/4 of the length of the member.

The obtained equation is incorporated into differential equations that describe the
elastic buckling of a non-uniform member, based on which the authors arrived at a general
Equation (10), which sufficiently describes the influence of the axial force distribution along
a non-uniform member.

N̂(x) = N(x) ·
Iχ
min

I(x)χ ·
Iβ
x=0 · Iγ

x=L/2 · Iβ
x=L

I(2·β+γ)
max

(10)

where Ix=0, Ix=L/2, and Ix=L are the moments of inertia in the sections at distances 0, L/2, and
L from the smallest cross-section of the member, Imax is the moment of inertia of the largest
cross-section along the member, and Imin is the moment of inertia of the smallest cross-section.
The coefficients β, χ, and γ represent the correction coefficients, and the authors have obtained
a good agreement with the numerical simulations, with values β = 0.30, χ = 0.30, and γ = 0.15.

Therefore, by using Equations (8)–(10), it is possible to calculate the critical buckling
force of a non-uniform member with a non-uniform distribution of axial force. For the
case when the compressive force in the element is uniform, Equation (9) takes the form of
Equation (11).

C =
21

4 · (cx=0 + cx=L) + 6 · (cx=L/4 + cx=3L/4) + cmax
(11)

The different c values are coefficients at the corresponding points, following
Equation (10) and using Equation (12).

c(x) =
Iχ
min

I(x)χ ·
Iβ
x=0 · Iγ

x=L/2 · Iβ
x=L

I(2·β+γ)
max

(12)

While this methodology can cover many buckling cases for non-uniform members, it
is a more complex and laborious procedure for determining the resistance of such members.
Namely, to reach the part of the procedure where the critical buckling force is determined,
it is necessary to perform at least six calculations almost as complex as the methods
presented in Sections 2.1, 2.3 and 2.4. This disadvantage can be partially offset because the
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entire procedure is analytical and can be quickly solved by various algorithms in software
packages that are relatively accessible today. In addition, a simple, functional relationship
between factor C and the tapering ratio γ allows for a direct insight into how the critical
buckling force changes from calculating only a few values of factor C in the area of the
tapering ratio γ of interest.
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2.6. Marques, Taras, Simões da Silva, Greiner i Rebelo [26]

This method calculates the position of the critical cross-section and performs a buckling
calculation of a non-uniform element using its properties. This position depends on the
tapering ratio γ and the critical load multiplier αcr, which require a numerical buckling
simulation. The methodology foresees three shifts in the function, describing the critical
cross-section’s position. For a smaller slenderness, the critical cross-section is the smallest
one, followed by a displacement by increasing non-dimensional slenderness up to a point
where the position of the critical cross-section remains constant. The calculation process
according to this method is shown in Figure 8.
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The calculation methodology is based on the critical load multiplier αcr, which is
precisely the procedure’s biggest drawback. Namely, the analysis of its form (numerical)
complicates the calculation procedure compared to those presented so far, as there is no
possibility of analytical determination for this parameter. Introducing numerical analysis
into the procedure moves away from practical application because easy automation is
impossible. It, thus, realistically weakens the possibility of its inclusion in the normative
procedure EN 1993-1-1 [22].

3. Parametric Analysis

The literature’s methods for calculating non-uniform element buckling, discussed
in the previous chapter, were used here for a parametric analysis to understand the rela-
tionship between the solutions for the different parameters. This analysis helps highlight
the differences in the calculation methodologies and assess their practical applicability,
enabling a qualitative evaluation of each method based on its calculation complexity and
relative result accuracy.

The parametric analysis offers an understanding of the buckling resistance in vari-
ous non-uniform elements, graphically displayed through curves showing the functional
relationship between the normalized resistance values and significant parameters. This
allows for an evaluation of how varying variables impact a particular calculation method’s
applicability. Moreover, the large data set provides insight into the specific methods’ limita-
tions, suggesting ways to broaden their scope and verifying the calculation results with the
applied solutions.

3.1. Limitations, Varied Parameters, and Methods of Displaying Results

To make the results of various methods comparable, it was necessary to determine
the range of variations of the variables and set certain limitations so that the results would
be valid. Accordingly, in the parametric analysis, the following statements were adopted,
which were aligned with the notes from [45].

• The change in the height of the web is linear along the length of the member.
• There is no change in the thickness of the cross-section parts or the width of the flange

along the length of the member.
• The analyzed members are homogeneous (the web and flange are of the same

steel quality).
• If there are class 4 cross-sections within the length of the element, according to [22],

their effective area is larger than the area of the smallest cross-section.

The limitations were tied to the calculation methods’ capabilities, with no method
defining the change in the flange’s width or how to incorporate that change. As noted
in [45], most automation production equipment requires a constant flange width through-
out the member’s length, making this limitation somewhat technological. The chosen
parameters varied to allow comparability between the methods and to examine the pa-
rameters that designers can manipulate when using a non-uniform member. Thus, the
design-influenced variables affecting the buckling resistance calculation (slenderness based
on the smallest cross-section; ratio of smallest to largest cross-section heights) were chosen
for the parametric analysis.

The tapering ratio change was an essential variable, as suggested in all the methodologies
in Section 2. The non-dimensional slenderness based on the smallest cross-section was also
varied, as it was the only commonality between the different calculation methodologies. It
allowed for the calculation of a specific member length based on the smallest cross-section’s
characteristics, which was then applicable to all the calculation methods using the equation
derived from the Euler’s buckling critical force, as shown in Equation (13).

L = λ0,min · π · i0 ·
√

E
fy

(13)
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where λ0,min is the non-dimensional slenderness based on the smallest cross-section and i0
is the radius of inertia of the smallest cross-section.

The unalterable parameters throughout the analysis included the initial cross-section
shape, steel quality, and production type, as their changes would only linearly translate the
resistance/non-dimensional slenderness curve along the resistance axis. For the analysis,
the smallest cross-section for all the members was chosen as HEB 300, based on the analyses
in [26], the steel quality S235 according to [22], and a welding production process (plated
structural elements). The non-dimensional slenderness based on the smallest cross-section
λ0,min was varied in steps up to a maximum value depending on the tapering ratio γ. The
tapering ratios ranged from one for a uniform member up to eight, with variation steps
increasing progressively. For the tapering ratios from one to 1.75, the slenderness was
varied from zero to three, with a step of 0.20. For the tapering ratios from two to eight, the
slenderness range increased by one for each increment (e.g., for the tapering ratio γ = 2, the
slenderness range was from zero to four), and the step was kept so that within the range
from zero to four it was 0.20, and after that 0.50. The member lengths were determined
using Equation (14) based on the varied non-dimensional slenderness, as shown in Table 3.

Table 3. Buckling lengths depending on the non-dimensional slenderness based on the smallest
cross-section—HEB 300; S235.

λ0,min 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

L [m] 2.46 4.92 7.38 9.84 12.30 14.76 17.22 19.68 22.14 24.60 27.07 29.53

λ0,min 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.5 5.0 5.5 6.0

L [m] 32.0 34.4 36.9 39.4 41.8 44.3 46.7 49.2 55.4 61.5 67.7 73.8

λ0,min 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0

L [m] 80.0 86.1 92.3 98.4 104.6 110.7 116.9 123.0 129.2 135.3

The total number of calculations and a summarized view of the varied variables
(and their combinations) are shown in Table 4. The variations and individual steps were
chosen based on the area of interest and the required accuracy. The tapering ratios were
more densely observed from one to three, representing the most likely range in the typical
applications, assuming the height of the members was just a few meters. The observed
slenderness area was expanded with the increase in the tapering ratio because the resistance
drop trend with the increasing tapering ratio translated the resistance curve along the
slenderness axis.

Using the Autodesk Robot Structural Analysis, 291 numerical buckling simulations
were carried out according to the method by Marques et al. [26] to determine the critical
load multiplier αcr for the varied member cases. Steel was modeled as elastic with a yield
strength of 235 N/mm2 and a modulus of elasticity of 210.000 N/mm2. An additional
buckling analysis using shell finite elements confirmed minor differences in the critical
load multipliers.

A numerical analysis was also conducted using the ANSYS 2019 software to gain
insight into the accuracy of the considered methods for calculating the buckling resistance
of the tapered columns. The numerical analysis consisted of two steps. In the first step, an
eigenvalue buckling analysis was performed to determine the critical load and to obtain
the deformed geometry (initial imperfection) of the tapered member used in the second
step, which involved a nonlinear calculation with a gradual increase in the load until
failure (Figure 9a). The tapered columns with various slenderness and tapering ratios
were modeled using four-node shell elements with six degrees of freedom at each node
(SHELL181). At one end of the column, a pinned support was modeled, while on the other
side, where the load was applied, a sliding support was modeled, allowing for translation
along the member’s longitudinal axis. In the buckling analysis, the steel material was
modeled as linear elastic with a modulus of elasticity of 210.000 N/mm2. In the nonlinear
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analysis, the steel was modeled bilinearly with a yield strength of 235 N/mm2 and a tangent
modulus of 2.100 N/mm2. To ensure the accuracy and reliability of the numerical model,
we drew upon the meticulously documented, verified, and validated numerical model for
tapered steel columns by Marques et al. [26].

Table 4. Varied parameters and the number of calculations.

Calculation Method Tapering Ratio—γ
= hmax/hmin

Non-Dimensional Slenderness
Based on the Smallest

Cross-Section—
¯
λ0,min

Number of
Calculations

Number of
Methods Summary

Lee et al. [8]
Modified Lee et al. [8] 1

Baptista et al. [21] 2

Šapalas et al. [32]
Smith [44]
Serna et al. [33]
Marques et al. [26]

1.00

0.0; 0.2; 0.4; 0.6; 0.8;
1.0; 1.2; 1.4; 1.6; 1.8;

2.0; 2.2; 2.4; 2.6; 2.8; 3.0

16 6 96

1.25 16 6 96

1.50 16 6 96

1.75 16 6 96

2.00 0.0–3.0; 3.2; 3.4; 3.6; 3.8; 4.0 21 6 126

2.50 0.0–4.0; 4.5; 5.0 23 6 138

3.00 0.0–4.0; 4.5; 5.0; 5.5; 6.0 25 6 150

4.00 0.0–4.0; 4.5; 5.0; 5.5; 6.0; 6.5; 7.0 27 6 162

5.00 0.0–4.0; 4.5; 5.0; 5.5; 6.0; 6.5; 7.0; 7.5; 8.0 29 6 174

6.00 0.0–4.0; 4.5; 5.0; 5.5; 6.0; 6.5; 7.0; 7.5; 8.0;
8.5; 9.0 31 6 186

7.00 0.0–4.0; 4.5; 5.0; 5.5; 6.0; 6.5; 7.0; 7.5; 8.0;
8.5; 9.0; 9.5; 10.0 33 6 198

8.00 0.0–4.0; 4.5; 5.0; 5.5; 6.0; 6.5; 7.0; 7.5; 8.0;
8.5; 9.0; 9.5; 10.0; 10.5; 11.0 35 6 210

1728

Note 1: Methodology applied only for the tapering ratios between 7.0 and 8.0. Note 2: Methodology applied only
for the tapering ratios between 1.0 and 6.0.
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Figure 9. ANSYS project schematic (a) and a buckled tapered steel column (b).

3.2. Implementation of the Parametric Analysis

Each procedure from Section 2 was prepared as a calculation sequence for a spread-
sheet editor, Microsoft Excel. The methods involving data reading from the curves were
mapped and described using regression functions. Some methods were expanded for
applicability across the parameter changes range, as shown in Table 4.

The calculation method by Lee et al. [8], which did not require graphical data reading,
was ideal for the spreadsheet calculations. However, its applicability was limited by the
functional relationship between the change factor length g and the tapering ratio γ per
Equation (3). It disallowed the valid buckling resistance for all the parametric analysis-
predicted tapering ratios (γ = 7 and 8). Therefore, the application area was expanded
to larger tapering ratios by isolating and extending the relatively linear part of the g-γ
curve between the tapering ratios 3.0 and 5.5. This maintained the safety of the approach
for assessing the resistance of non-uniform members by keeping the new curve above
the existing one, and the change was easily incorporated into the existing equation by



Appl. Sci. 2023, 13, 11498 15 of 29

adding a simple inequality condition that regulated the scope of each function. In this case,
Equation (3) took the form of Equation (14).

gmod = 1.000 − 0.375 · γ + 0.080 · γ2 · (1.00 − 0.0775 · γ) ≥ −0.0379 · γ + 0.5368 (14)

The Baptista et al. [21] method employed curves to read the factor k value, which
calculates a non-uniform member buckling resistance. These curves were digitized into
regression functions, where the k values read for each prescribed non-dimensional slen-
derness value from 0.6 to 3.0 (step 0.20) and each ratio from the smallest (hmin) to largest
(hmax) cross-section height. The methodology’s scope was expanded for comparison with
other methods through the parametric analysis. A relatively linear area around a non-
dimensional slenderness of 3.0 to the point of inflexion was used to maintain the capacity
increase with the slenderness change. Thus, the functional relationship between k and
the slenderness, given by Equations (15)–(21), retained the original form up to a specific
slenderness, after which k increased linearly (Figure 10).

k(0.70) =

{
−0.0959 · λ

2
min + 0.4744 · λmin + 0.9275 λmin ≤ 2.4

0.03 · λmin + 1.45 λmin > 2.4
(15)

k(0.50) =

{
−0.2092 · λ

2
min + 1.095 · λmin + 0.5853 λmin ≤ 2.6

0.05 · λmin + 1.9 λmin > 2.6
(16)

k(0.40) =

{
−0.261 · λ

2
min + 1.5522 · λmin + 0.317 λmin ≤ 3.0

0.11 · λmin + 2.3 λmin > 3.0
(17)

k(0.30) =

{
−0.2611 · λ

3
y,min + 1.1828 · λ

2
y,min − 0.2819 · λy,min + 1.0232 λmin ≤ 2.8

0.12 · λmin + 3.45 λmin > 2.8
(18)

k(0.25) =

{
−0.2914 · λ

3
y,min + 1.413 · λ

2
y,min − 0.3931 · λy,min + 1.0148 λmin ≤ 3.0

0.13 · λmin + 4.3 λmin > 3.0
(19)

k(0.20) =

{
−0.3952 · λ

3
y,min + 2.0291 · λ

2
y,min − 1.0354 · λy,min + 1.2067 λmin ≤ 3.0

0.14 · λmin + 5.3 λmin > 3.0
(20)

k(0.15) =

{
−0.4698 · λ

3
y,min + 2.534 · λ

2
y,min − 1.4993 · λy,min + 1.3341 λmin ≤ 3.0

0.15 · λmin + 6.55 λmin > 3.0
(21)

Šapalas et al. [32] used the factor αn in their methodology to calculate the equivalent
height of the member, either graphically or by linear interpolation. Given that linear
interpolation could introduce errors in the resistance values and that the graphical method
was not ideal for the parametric analyses, a sixth-degree polynomial was used to map the
curve describing this relationship. The equation of the curve (22) was directly adopted for
the parametric analysis.



Appl. Sci. 2023, 13, 11498 16 of 29

Appl. Sci. 2023, 13, x FOR PEER REVIEW 16 of 30 
 

( ) λ λ λ λ
λ λ

− ⋅ + ⋅ − ⋅ + ≤
=  ⋅ + >

3 2
y,min y,min ,min min

min min

0.2611 1.1828 0.2819 1.0232 2.80.30
0.12 3.45 2.8

yk  (18) 

( ) λ λ λ λ
λ λ

− ⋅ + ⋅ − ⋅ + ≤
=  ⋅ + >

3 2
y,min y,min ,min min

min min

0.2914 1.413 0.3931 1.0148 3.00.25
0.13 4.3 3.0

yk  (19) 

( ) λ λ λ λ
λ λ

− ⋅ + ⋅ − ⋅ + ≤
=  ⋅ + >

3 2
y,min y,min ,min min

min min

0.3952 2.0291 1.0354 1.2067 3.00.20
0.14 5.3 3.0

yk  (20) 

( ) λ λ λ λ
λ λ

− ⋅ + ⋅ − ⋅ + ≤
=  ⋅ + >

3 2
y,min y,min ,min min

min min

0.4698 2.534 1.4993 1.3341 3.00.15
0.15 6.55 3.0

yk  (21) 

 
Figure 10. Functional relationship between the coefficient k and the slenderness prescribed by the 
methodology [19], according to Equations (15)–(21). 

Šapalas et al. [32] used the factor αn in their methodology to calculate the equivalent 
height of the member, either graphically or by linear interpolation. Given that linear in-
terpolation could introduce errors in the resistance values and that the graphical method 
was not ideal for the parametric analyses, a sixth-degree polynomial was used to map the 
curve describing this relationship. The equation of the curve (22) was directly adopted for 
the parametric analysis. 

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

α = − ⋅ + ⋅ − ⋅ + ⋅ − ⋅ + ⋅ +
6 5 4 3 2

0 0 0 0 0 0

6 5 4 3 2
7.35 24.89 33.14 22.13 8.00 1.92 0.55y y y y y y

n

y L y L y L y L y L y L

I x I x I x I x I x I x

I x I x I x I x I x I x
 (22) 

Smith’s methodology [44] utilized the factor m to adjust the critical buckling force. 
Given only in table form (Table 2), this factor’s functional relationship with the moments 
of inertia ratio of a non-uniform member end was a fourth-degree polynomial. As linear 
interpolation might not have yielded sufficiently accurate results, Equation (23) was 
adopted for the parametric analysis. 

Figure 10. Functional relationship between the coefficient k and the slenderness prescribed by the
methodology [19], according to Equations (15)–(21).

αn = −7.35 ·
I6
y(x0)

I6
y(xL)

+ 24.89 ·
I5
y(x0)

I5
y(xL)

− 33.14 ·
I4
y(x0)

I4
y(xL)

+ 22.13 ·
I3
y(x0)

I3
y(xL)

− 8.00 ·
I2
y(x0)

I2
y(xL)

+ 1.92 ·
Iy(x0)

Iy(xL)
+ 0.55 (22)

Smith’s methodology [44] utilized the factor m to adjust the critical buckling force.
Given only in table form (Table 2), this factor’s functional relationship with the moments of
inertia ratio of a non-uniform member end was a fourth-degree polynomial. As linear inter-
polation might not have yielded sufficiently accurate results, Equation (23) was adopted
for the parametric analysis.

αn = −9.23 ·
I4
y(x0)

I4
y(xL)

+ 26.28 ·
I3
y(x0)

I3
y(xL)

− 29.17 ·
I2
y(x0)

I2
y(xL)

+ 18.78 ·
Iy(x0)

Iy(xL)
+ 3.21 (23)

The methodologies proposed by Serna et al. [33] and Marques et al. [26] were well
suited to the needs of the parametric analysis in terms of both their scope and calculation
method. They were adopted as presented in Sections 2.5 and 2.6, with the calculations
adhering to the procedures shown in Figures 7 and 8, respectively.

4. Comparison of the Results and Discussion

The varied methods used for the analysis allowed for a deeper understanding of how
changes in the tapering ratio can impact the resistance of a member. These results also shed
light on the discrepancies between the calculated resistances across the different methodolo-
gies. By comparing the results of the resistance calculations for each methodology shown
in Section 2 on a reduction factor non-dimensional slenderness (χ-λ0) diagram for each
tapering ratio, insights into the trends and the relative accuracy of each methodology were
gained. For comparison, the method proposed by Marques et al. [26], based on a large num-
ber of numerical analyses incorporating material and geometric imperfections, was used as
a reference. This contrasted with other methods primarily based on analytical methods,
where imperfections were incorporated via European buckling curves [22]. Along with
the results from the observed methodologies, the calculations from EN 1993-1-1 [22] for
an I-welded profile are shown. This section presents the buckling curve b for the smallest
cross-section for considering non-uniform members without calculation guidelines.

It is worth noting that the mechanical properties, except for the modulus of elastic-
ity, had a limited direct influence on the stability analysis. While the overall structural
response was governed by the yield strength, ultimate strength, and Poisson’s ratio, they
did not play a significant role in the stability part of the methodology, as the stiffness
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and geometric factors were crucial. Conversely, the geometric properties, particularly the
change in the moment of inertia, profoundly influenced the stability analysis results. As
non-uniform members experienced changes in the tapering ratios, their moment of inertia
varied significantly, which was normalized via the non-dimensional slenderness.

To visualize these comparisons, curves depicting the dependency of the normalized
resistance on the non-dimensional slenderness were created for the selected tapering ratios.
The selected ratios were chosen to cover the smaller tapering ratios more densely and
uniformly cover ratios beyond γ = 2.0. Three characteristic areas were singled out for
individual non-dimensional slenderness, and a specific reduced slenderness was selected
from each area to describe the trends. The observed reduced slenderness values selected
were λ0 = 0.8, λ0 = 2.0, and λ0 = 5.0, representing a low, medium, and high non-dimensional
slenderness, respectively.

4.1. Relation of Normalized Resistance and Reduced Slenderness

Figure 11a presents the buckling resistance calculations of a uniform member using
various methods. Except for the Marques et al. [25] method, all matched the buckling curve
b, suggesting a correct application. The differences with Marques et al. [26] might have been
due to unique imperfection factors and potential non-calibration for uniform members.
The results indicated that EN 1993-1-1 [22] and the other methods yielded conservative
results for a slenderness greater than λ0 = 0.8 and uniform members.
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As the tapering ratio mildly increased from γ = 1.0 to γ = 1.25, the buckling resistance
results from the various methodologies converged closer to the ones proposed by Marques
et al. [26] (Figure 11b). Except for Baptista et al. [19], all the methodologies closely matched
up to the non-dimensional slenderness of λ0 = 1.0, beyond which slight discrepancies
appeared. The resistance increases were noted compared to a uniform member, particularly
in the mid-slenderness area. These trends were accentuated with a further rise in the
tapering ratio to γ = 1.50 (Figure 12a). Compared to the numerical models from ANSYS, it
was noticeable that the methods of Lee et al. [8], Šapalas et al. [32], and Serna et al. [33] gave
lower values for the reduction factor, as well as the methods according to Smith [44] and
Marques et al. [26] for the slenderness ratios less than 1.0, while the method according to
Baptista et al. [21] gave higher reduction factors for the slenderness of 1.0 and less. For the
tapering ratios of 1.5 and 2.0, a similar trend was observed. The methods of Lee et al. gave
lower buckling resistance values compared to the numerical models [8], Šapalas et al. [32],
and Serna et al. [33], as well as the methods according to Smith [44] and Marques et al. [26]
for the slenderness up to 1.2 for a tapering ratio of 1.5 and the slenderness of 1.6 in the
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case of a tapering ratio of 2. According to Baptista et al. [20], the results overestimated
the buckling resistance up to a slenderness of 1.2 for a tapering ratio of 1.5 and 1.4 for a
tapering ratio of 2.0.
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With a tapering ratio of γ = 4.0 (Figure 13a), there was a slight redistribution of the
obtained resistances, according to the various calculation methods. Baptista et al. [21] stood
out with divergent results up to λ0 = 2.8. Excluding this methodology, the results were densely
grouped. Compared to lower tapering ratios, the resistances by Marques et al. [26] were the
lowest across the most varied non-dimensional slenderness ranges (except up to λ0 = 1.2). The
calculations of Serna et al. [33] were almost identical, as were Smith [44], Šapalas et al. [32],
and Lee et al. [8]. The most significant deviation of the obtained resistances from a uniform
element of the same length was in the mid-non-dimensional slenderness range.
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For a tapering ratio of γ = 6.0, the previous trends for lower ratios persisted with
a slightly higher calculation result dispersion between the methodologies (Figure 13b).
Apart from the Baptista et al. [21] known divergence, the methodology proposed by Mar-
ques et al. [26] stood out with the lowest resistances. The results according to Serna et al. [33]
and Lee et al. [8] were relatively close, and for a higher non-dimensional slenderness, so
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was the Baptista et al. [21] method (λ0 > 4.0). With an increasing non-dimensional slen-
derness, the dispersion of the calculation results among the different methods increased,
especially within the mid-non-dimensional slenderness range, from λ0 = 2.0 to λ0 = 4.5. The
results, despite dispersion, were relatively homogeneous and followed a specific pattern.
No significant changes in the results of the different calculation methods were observed at
the maximum tapering ratios.

When the original equation from Lee et al. [8] was followed in the buckling resistance
calculation, the results deviated significantly from the other methods. Using Equation (14)
brought the resistances closer to the other methods’ results. All the methodologies showed
resistance decreases with increased slenderness. The lowest resistance was calculated using
the Marques et al. [26] method, with the closest results achieved by Serna et al. [33]. The other
methodologies gave higher resistances, closely grouped at all slenderness values. The results
were most dispersed in the medium and high slenderness areas, from λ0 = 2.5 to λ0 = 6.0.

For the tapering ratios of four and sx, all the methods gave a lower buckling resistance
compared to the ANSYS numerical models, except for the method according to Baptista et al. [21],
which overestimated the resistance for slenderness up to 3.2 (γ = 4.0) and 2.8 (γ = 6.0).

Generally, the dispersion of the calculation results increased with the tapering ratio,
but all the methodologies were relatively close. The Baptista et al. [21] method deviated the
most, especially in the low and medium slenderness areas. Marques et al. [26] predicted the
highest resistances at lower taper ratios and gradually more conservative resistances with
the increase in the taper ratio. The other methods predicted similar resistance levels with
increasing taper ratios, with the Lee et al. [8] method predicting the lowest resistances at
lower taper ratios, which slightly increased with the taper ratio increase. The most notable
dispersion was in the medium slenderness area. The resistance dispersion gradually
increased with the slenderness, decreasing beyond the medium effective slenderness area.
All the methods, except Baptista et al. [21], provided nearly identical results in the low
slenderness area, regardless of the tapering ratio.

4.2. Normalized Resistance and the Taper Ratio Relationship

Viewing the relationship between the normalized resistance and taper ratio for various
non-dimensional slenderness levels helped to understand the congruence or divergence
of the different methods in predicting the buckling resistance of non-uniform members.
Specifically, the results for a slenderness of λ0 = 0.8, λ0 = 2.0, and λ0 = 5.0 (representing
areas of small, medium, and large slenderness) provided essential insights.

Figure 14 and Table 5 show the buckling resistances for small slenderness, similar across
all methodologies except for Baptista et al. [21], which was excluded from the average and
statistical parameter calculations as an outlier. The Lee et al. [8] modified procedure results
were considered to avoid artificially reducing the coefficient of variation for the smaller
tapering ratios. The most significant deviations were at a tapering ratio γ = 5.0, with a
coefficient of variation of 0.018, suggesting high conformity. Slight deviations were mainly
due to increased resistance from the Marques et al. [26] methodology for the tapering ratios
over γ = 1.75.

Analyzing the average resistances shown in Table 6, it was clear that the smaller tapering
ratios experienced the most resistance increase per tapering ratio unit. For instance, a member
with a tapering ratio of γ = 2.0 saw a 20% resistance increase compared to its uniform counterpart,
which gradually diminished as the taper ratio escalated. At a taper ratio of γ = 8.0, a member’s
resistance was 37% higher. Comparing this resistance elevation to a corresponding mass increase
showed the economic preference for smaller tapering ratios, especially for members with a low
slenderness. A member with a γ = 1.25 taper ratio underwent a resistance increase 2.6 times
its mass increase compared to a uniform member. This ratio fell below one as the taper ratio
surpassed γ = 3.0, raising questions about the economic and technical feasibility of further
increasing the taper ratio. These findings were corroborated by the average resistance values
shown in Table 5, where the resistance increase began to stagnate beyond a γ = 3.0 tapering ratio,
more so beyond γ = 4.0. A non-uniform member with a tapering ratio of γ = 4.0 presented 32%
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more resistance and 35% more mass than an equally lengthy uniform member. For a member
with the most varied taper ratio of γ = 8.0, the ratio of the resistance-to-mass increase was the
lowest at 0.46. As such, the taper ratio had a minimal impact on the resistance for members in
the area of low non-dimensional slenderness.

Figure 14. Normalized resistances (χ0) for the varied tapering ratios (γ) and a non-dimensional
slenderness of λ0 = 0.8 - [8,21,22,26,32,33,44].

Table 5. Normalized resistance χ depending on the tapering ratio γ–λ0 = 0.8; HEB 300; S235.

λ0 0.8
γ 1.00 1.25 1.5 1.75 2.00 2.50 3.00 4.00 5.00 6.00 7.00 8.00

Lee et al. [8]—χL 0.72 0.77 0.80 0.83 0.86 0.89 0.92 0.95 0.96 0.97 0.99 1.00
Baptista et al. [21]—χB 0.72 0.84 0.91 0.94 0.96 1.00 1.00 1.00 1.00 1.00 - -
Šapalaš et al. [32]—χŠ 0.72 0.78 0.81 0.84 0.87 0.90 0.92 0.95 0.97 0.98 0.99 1.00

Smith [44]—χS 0.72 0.79 0.83 0.86 0.87 0.90 0.92 0.95 0.97 0.98 0.99 1.00
Serna et al. [33]—χSe 0.72 0.78 0.82 0.85 0.87 0.90 0.91 0.94 0.96 0.97 0.98 0.98

Marques et al. [26]—χM 0.72 0.78 0.82 0.85 0.88 0.92 0.94 0.97 1.00 1.00 1.00 1.00
Lee et al. [8]—χL,mod 0.72 0.77 0.80 0.83 0.86 0.89 0.92 0.95 0.96 0.97 0.98 0.99

Mean value 0.72 0.78 0.82 0.85 0.87 0.90 0.92 0.95 0.97 0.98 0.99 1.00
Mean squared error 0.001 0.008 0.010 0.009 0.009 0.009 0.010 0.013 0.017 0.013 0.009 0.007

Coefficient of variation 0.002 0.010 0.012 0.011 0.010 0.010 0.011 0.013 0.018 0.013 0.009 0.007

Table 6. Average normalized resistance χ0,SV depending on the tapering ratio γ and the ratio of the
resistance increase to the mass increase—λ0 = 0.8; HEB 300; S235.

λ0 γ χ0,SV
χ0−χ0(γ=1)

χ0(γ=1) A [cm2] A−A(γ=1)
A(γ=1)

χ0−χ0(γ=1)/χ0(γ=1)
A−A(γ=1)/A(γ=1)

1 2 3 4 5 6 4/6

0.8

1.00 0.72 0.00 142.82 0.00 -
1.25 0.78 0.08 146.95 0.03 2.60
1.50 0.82 0.13 151.07 0.06 2.24
1.75 0.85 0.17 155.195 0.09 1.95
2.00 0.87 0.20 159.32 0.12 1.74
2.50 0.90 0.25 167.57 0.17 1.41
3.00 0.92 0.28 175.82 0.23 1.19
4.00 0.95 0.32 192.32 0.35 0.91
5.00 0.97 0.34 208.82 0.46 0.74
6.00 0.98 0.35 225.32 0.58 0.61
7.00 0.99 0.37 241.82 0.69 0.53
8.00 1.00 0.38 258.32 0.81 0.46

χ0,SV—mean value of the normalized resistance; A—cross-sectional area at L/2.

Observing the resistances from the various methods for the slenderness of λ0 = 0.8
using the Marques et al. [26] methodology showed similar results across all the methods,
according to the variation coefficients shown in Table 7. The most significant deviation was
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seen with the methodology proposed by Serna et al. [33] at the tapering ratio of γ = 5.0.
The most significant variances were observed at the taper ratio of γ = 1.50. Generally, the
average resistance ratio was less than 1.0 across the tapering ratios, indicating that the
Marques et al. [26] methodology provided the highest resistance for less slender members.

Table 7. Normalized resistances compared to the normalized resistances, according to the methodol-
ogy conceived by Marques et al. [24]—λ0 = 0.8; HEB 300; S235.

γ 1.00 1.25 1.5 1.75 2.00 2.50 3.00 4.00 5.00 6.00 7.00 8.00

Marques et al. [26]—χM 0.72 0.78 0.82 0.85 0.88 0.92 0.94 0.97 1.00 1.00 1.00 1.00
χŠ/χM 1.01 1.00 0.99 0.99 0.99 0.98 0.98 0.98 0.97 0.98 0.99 1.00
χS/χM 1.01 1.01 1.01 1.00 0.99 0.98 0.98 0.97 0.97 0.98 0.99 1.00
χSe/χM 1.01 1.01 1.00 0.99 0.99 0.98 0.97 0.97 0.96 0.97 0.98 0.98

χL,mod/χM 1.01 0.99 0.98 0.98 0.97 0.98 0.98 0.97 0.96 0.97 0.98 0.99

Mean value 1.01 1.00 0.99 0.99 0.99 0.98 0.98 0.97 0.96 0.98 0.99 0.99
Coefficient of variation 0.001 0.011 0.013 0.011 0.008 0.004 0.003 0.005 0.006 0.007 0.007 0.007

Analyzing Figure 15, which displays the normalized resistances versus the tapering
ratios for λ0 = 2.0, the resistances according to methodologies by Baptista et al. [21] and
Lee et al. [8] deviated at higher tapering ratios. Excluding these, the resistances from the
other methods were relatively close for all the tapering ratios. Therefore, the resistance
from these deviating methodologies was excluded from the statistical analysis (Table 8).
There was a more significant dispersion in the resistance results for the members with
medium non-dimensional slenderness compared to those with low slenderness.

Figure 15. Normalized resistances (χ0) for the varied tapering ratios (γ) and a non-dimensional
slenderness of λ0 = 2.0—[8,21,22,26,32,33,44].

As shown in Table 8, as the tapering ratio increased, the dispersion of the results,
measured by the coefficient of variation, decreased, reaching its lowest at γ = 3.0. Com-
pared to a uniform member, the most substantial resistance increase per unit tapering ratio
occurred at smaller tapering ratios, paralleling the trend with the members of low slender-
ness (Table 9). Furthermore, the tapering ratio’s impact on the resistance was considerably
more significant in the members with a low slenderness. A member with γ = 8.0 offered
286% more resistance than a uniform one but has 81% more mass. Economically, the best
resistance increase relative to the mass increase ratio was found in the members with a taper
ratio of γ = 1.25. It was intriguing that for all the tapering ratios, the rise in the resistance
substantially exceeded the mass increase relative to a uniform member, a phenomenon
not witnessed with members of a low slenderness. However, this pattern aligned with the
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more significant influence of the tapering ratio on the buckling resistance identified for the
members with a low slenderness.

Table 8. Normalized resistance χ0 depending on the tapering ratio γ—λ0 = 2.0; HEB 300; S235.

λ0 2.0

γ 1.00 1.25 1.5 1.75 2.00 2.50 3.00 4.00 5.00 6.00 7.00 8.00

Lee et al. [8]—χL 0.21 0.25 0.29 0.33 0.38 0.48 0.57 0.69 0.74 0.78 0.85 0.95
Baptista et al. [21]—χB 0.21 0.28 0.33 0.37 0.41 0.50 0.60 0.74 0.86 0.94 - -
Šapalaš et al. [32]—χŠ 0.21 0.26 0.30 0.35 0.40 0.50 0.58 0.70 0.77 0.82 0.86 0.89

Smith [44]—χS 0.21 0.27 0.33 0.38 0.42 0.50 0.57 0.68 0.76 0.81 0.85 0.88
Serna et al. [33]—χSe 0.21 0.26 0.31 0.36 0.41 0.49 0.55 0.65 0.72 0.77 0.80 0.83

Marques et al. [26]—χM 0.27 0.32 0.37 0.41 0.45 0.51 0.57 0.64 0.70 0.74 0.78 0.82
Lee et al. [8]—χL,mod 0.21 0.25 0.29 0.33 0.38 0.48 0.57 0.69 0.74 0.78 0.83 0.86

Mean value 0.22 0.27 0.32 0.37 0.41 0.50 0.57 0.67 0.74 0.79 0.82 0.85
Mean squared error 0.027 0.030 0.031 0.030 0.026 0.014 0.010 0.023 0.030 0.035 0.033 0.030

Coefficient of variation 0.122 0.112 0.099 0.082 0.062 0.027 0.017 0.034 0.041 0.044 0.040 0.036

Table 9. Average normalized resistance χ0,SV depending on the tapering ratio γ and the ratio of the
resistance increase to the mass increase—λ0 = 0.8; HEB 300; S235.

λ0 γ χ0,SV
χ0−χ0(γ=1)

χ0(γ=1) A [cm2] A−A(γ=1)
A(γ=1)

χ0−χ0(γ=1)/χ0(γ=1)
A−A(γ=1)/A(γ=1)

1 2 3 4 5 6 4/6

0.8

1.00 0.22 0.00 142.82 0.00 -
1.25 0.27 0.23 146.95 0.03 7.88
1.50 0.32 0.45 151.07 0.06 7.76
1.75 0.37 0.66 155.195 0.09 7.63
2.00 0.41 0.87 159.32 0.12 7.50
2.50 0.50 1.24 167.57 0.17 7.17
3.00 0.57 1.56 175.82 0.23 6.77
4.00 0.67 2.04 192.32 0.35 5.88
5.00 0.74 2.34 208.82 0.46 5.06
6.00 0.79 2.55 225.32 0.58 4.41
7.00 0.82 2.72 241.82 0.69 3.93
8.00 0.85 2.86 258.32 0.81 3.54

χ0,SV—mean value of the normalized resistance; A—cross-sectional area at L/2.

Table 10 shows the ratios of the calculated normalized buckling resistances using vari-
ous methodologies and those according to the methodology by Marques et al. [26] for the
varied taper ratios and a slenderness of λ0 = 2.0. It was evident that all the methodologies
predicted a lower resistance for the members up to a tapering ratio of γ = 3.0, while for
the ratios above γ = 3.0, the reference methodology anticipated higher resistances. The
resistance ratios were uniform across all the tapering ratios, as indicated by the maximum
coefficient of variation of 0.085 for a member with a taper ratio of γ = 1.50.

The obtained normalized resistances for the members of a high slenderness, with
λ0 = 5.0, across the varied tapering ratios are presented in Figure 16. The results deviated
significantly at larger taper ratios, particularly for the method proposed by Lee et al. [8].
Thus, the modified results, denoted as Lee et al.—mod, were used for the comparison
and statistical calculations. The method proposed by Marques et al. [26] gave the smallest
buckling resistance values, and as the tapering ratio increased, the results became more
dispersed. With the increase in the tapering ratio, both the buckling resistance and the
coefficient of variation increased (Table 11), with the latter being the smallest for the
tapering ratio of γ = 3.0 (0.027) and the largest for γ = 8.0 (0.206). Discrepancies were most
prominent for the method by Marques et al. [26], suggesting potential calibration issues
with high tapering ratios and slenderness.
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Table 10. Normalized resistances compared to the normalized resistances, according to the methodol-
ogy conceived by Marques et al. [24]—λ0 = 2.0; HEB 300; S235.

γ 1.00 1.25 1.5 1.75 2.00 2.50 3.00 4.00 5.00 6.00 7.00 8.00

Marques et al. [26]—χM 0.27 0.32 0.37 0.41 0.45 0.51 0.57 0.64 0.70 0.74 0.78 0.82

χŠ/χM 0.78 0.79 0.82 0.85 0.90 0.97 1.02 1.08 1.11 1.12 1.10 1.09
χS/χM 0.78 0.83 0.88 0.92 0.94 0.98 1.01 1.06 1.09 1.10 1.09 1.08
χSe/χM 0.78 0.81 0.84 0.87 0.90 0.94 0.98 1.02 1.04 1.05 1.03 1.02

χL,mod/χM 0.78 0.76 0.78 0.81 0.85 0.94 1.01 1.07 1.07 1.06 1.06 1.06

Mean value 0.78 0.80 0.83 0.86 0.90 0.96 1.00 1.06 1.08 1.08 1.07 1.06

Coefficient of variation 0.003 0.037 0.052 0.052 0.042 0.021 0.019 0.027 0.029 0.031 0.030 0.028

Figure 16. Normalized resistances (χ0) for the varied tapering ratios (γ) and a non-dimensional
slenderness of λ0 = 5.0—[8,21,22,26,32,33,44].

Table 11. Normalized resistance χ0 depending on the tapering ratio γ—λ0 = 5.0; HEB 300; S235.

λ0 5.0

γ 1.00 2.50 3.00 4.00 5.00 6.00 7.00 8.00

Lee et al. [8]—χL 0.04 0.10 0.13 0.19 0.23 0.26 0.36 0.70
Baptista et al. [21]—χB 0.04 0.11 0.14 0.19 0.22 0.26 - -
Šapalaš et al. [32]—χŠ 0.04 0.11 0.13 0.19 0.25 0.32 0.39 0.46

Smith [44]—χS 0.04 0.11 0.13 0.18 0.24 0.30 0.37 0.43
Serna et al. [33]—χSe 0.04 0.10 0.12 0.17 0.21 0.25 0.29 0.33

Marques et al. [26]—χM 0.05 0.11 0.13 0.16 0.20 0.23 0.24 0.27
Lee et al. [8]—χL,mod 0.04 0.10 0.13 0.19 0.23 0.26 0.33 0.40

Mean value 0.04 0.10 0.13 0.18 0.22 0.27 0.32 0.38
Mean squared error 0.005 0.004 0.004 0.012 0.023 0.038 0.059 0.078

Coefficient of variation 0.116 0.035 0.027 0.069 0.102 0.138 0.184 0.206

The tapering ratio’s impact on the resistance was most pronounced for the members
with a high slenderness despite a smaller resistance range than those with a medium
slenderness (Table 12). A member with the highest tapering ratio (γ = 8.0) displayed a
resistance increase of 857% compared to a uniform member. In the members with a high
slenderness, both the increase in the resistance per unit of the tapering ratio and the ratio of
the resistance increase to the mass increase rose. Notably, a member with a tapering ratio
of γ = 8.0 showed a resistance increase 10.59 times greater than its mass increase in relation
to a uniform member.
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Table 12. Average normalized resistance χ0,SV depending on the tapering ratio γ and the ratio of the
resistance increase to the mass increase—λ0 = 5.0; HEB 300; S235.

λ0 γ χ0,SV
χ0−χ0(γ=1)

χ0(γ=1) A [cm2] A−A(γ=1)
A(γ=1)

χ0−χ0(γ=1)/χ0(γ=1)
A−A(γ=1)/A(γ=1)

1 2 3 4 5 6 4/6

0.8

1.00 0.04 0.00 142.82 0.00 -

2.50 0.10 1.65 167.57 0.17 9.53

3.00 0.13 2.25 175.82 0.23 9.75

4.00 0.18 3.48 192.32 0.35 10.04

5.00 0.22 4.68 208.82 0.46 10.13

6.00 0.27 5.92 225.32 0.58 10.25

7.00 0.32 7.18 241.82 0.69 10.36

8.00 0.38 8.57 258.32 0.81 10.59

χ0,SV—mean value of the normalized resistance; A—cross-sectional area at L/2.

Compared to Marques et al.’s reference method [26], the other methods predicted
lower resistances up to a taper ratio of γ = 3.0 and higher (Table 13). The deviation
from the reference increased with the tapering ratio, with the slightest deviations for the
methodology by Serna et al. [33].

Table 13. Normalized resistances compared to the normalized resistances, according to the methodol-
ogy conceived by Marques et al. [24]—λ0 = 5.0; HEB 300; S235.

γ 1.00 2.50 3.00 4.00 5.00 6.00 7.00 8.00

Marques et al. [26]—χM 0.05 0.11 0.13 0.16 0.20 0.23 0.24 0.27

χŠ/χM 0.79 0.97 1.04 1.17 1.29 1.40 1.61 1.70
χS/χM 0.79 0.98 1.02 1.12 1.23 1.33 1.53 1.62
χSe/χM 0.79 0.93 0.97 1.02 1.06 1.09 1.20 1.23

χL,mod/χM 0.79 0.92 1.02 1.15 1.16 1.16 1.35 1.49

Mean value 0.79 0.95 1.01 1.11 1.18 1.24 1.42 1.51
Coefficient of variation 0.0004 0.0302 0.0307 0.0571 0.0815 0.1143 0.1277 0.1356

4.3. Evaluation of the Applicability of a Specific Methodology

Assessing the suitability of specific methodologies considered their application potential
within the existing regulatory framework (computation sequence per EN 1993-1-1 [22]).
This assessment factored in the discrepancies in the computation results compared to the
benchmark methodology (Marques et al. [26]). The idea revolved around the balance between
introducing new variables required for calculating a member’s resistance and maintaining the
simplicity and intelligibility of the computational process for engineers. Increased complexity
can lead to a higher potential for errors and reduced clarity of the process.

Each methodology introduced a unique set of variables for calculating the buckling
resistance for non-uniform members, as seen in Section 2’s calculation procedures. For
example, the method by Lee et al. [8] included just two new variables, the taper ratio γ
and the length change factor g, then proceeded according to the standard EN 1993-1-1
methodology. The other methods, like those proposed by Baptista et al. [21] and Ša-
palas et al. [32], introduced three or four new variables. Along with the Lee et al. [27]
method, these were relatively simple, requiring minimal additional computations. Contrar-
ily, the methodologies proposed by Serna et al. [33] and Marques et al. [26] were complex,
requiring many new variables and computational steps, including numerical buckling sim-
ulations for each case. For instance, the Serna et al. [33] calculation procedure introduced
12 new variables, and after their determination, the conventional computation for a uniform



Appl. Sci. 2023, 13, 11498 25 of 29

member began. Marques et al. [26] introduced nine new variables, one of which needed
to be determined by a numerical buckling simulation, increasing the complexity and time
required for each case. A summary of the required additional variables for the non-uniform
member calculations, compared to the uniform element calculations, is provided in Table 14.

Table 14. Number of additional calculations needed to determine the resistance of a non-uniform
member compared to the calculation of a uniform member, according to EN 1993-1-1.

Lee et al. [8] Baptista et al.
[21]

Šapalaš et al.
[32]

Smith [44] Serna et al. [33] Marques et al.
[26]

Lee et al.
[8]—mod

Number of
new variables

n
2 3 4 3 12 9 (12) 2

In order to evaluate the deviation of the results of each methodology from the reference
one (Marques et al. [26]), all the possible combinations of variables in the parametric
analysis were considered. The ratios of the normalized resistances of each methodology
and the reference one for the same non-dimensional slenderness and tapering ratio were
examined (Table 15). In the most commonly used taper ratio range, γ = 1.0–γ = 6.0, the
most minor deviation from the reference methodology was shown by the methodologies of
Lee et al. [8] and Serna et al. [33]. In order to include a specific parameter in the assessment
of its applicability, its importance must be assigned in the context of the purpose of the
calculation and engineering aspirations. Following the goal for the results to be as close as
possible to those of the reference methodology, the average value of the ratio of a particular
methodology represented 50% of the applicability rating, with an additional 25% deviation
(coefficient of variation). The remaining 25% of the rating represented the number of
additional variables compared to calculating a uniform member. In order to compare the
results, each parameter was assigned the same number of points, and then the importance
of the parameter was included by weighting the number of points. The ranking of the
methodologies’ applicability was obtained by ranking the number of points.

Table 15. Average values of the ratios of the normalized resistance, according to the used calcu-
lation methodologies, and the normalized resistance, according to the methodology proposed by
Marques et al. [26].

γ = 1.00–6.00

Marques et al.
[26]/Marques

et al. [26]

Lee et al. [8]/
Marques
et al. [26]

Baptista et al.
[21]/Marques

et al. [26]

Šapalaš et al.
[32]/Marques

et al. [26]

Smith
[44]/Marques

et al. [26]

Serna et al.
[33]/Marques

et al. [26]

Lee et al. [8]—
mod./Marques

et al. [26]

χM/χM χL/χM χB/χM χŠ/χM χS/χM χSe/χM χL,mod/χM

Mean value 1.0 1.00 1.06 1.04 1.04 0.98 1.00

Coefficient of
variation 0.0 0.13 0.12 0.17 0.13 0.09 0.13

γ = 1.00–8.00

Marques et al.
[26]/Marques

et al. [26]

Lee et al.
[8]/Marques

et al. [26]

Baptista et al.
[21]/Marques

et al. [26]

Šapalaš et al.
[32]/Marques

et al. [26]

Smith
[44]/Marques

et al. [26]

Serna et al.
[33]/Marques

et al. [26]

Lee et al. [8]—
mod./Marques

et al. [26]

χM/χM χL/χM χB/χM χŠ/χM χS/χM χSe/χM χL,mod/χM

Mean value 1.0 1.17 1.06 1.13 1.11 1.01 1.06

Coefficient of
variation 0.0 0.46 0.12 0.23 0.20 0.11 0.17

The evaluation process was undertaken by assigning scores to each criterion. For
the average value, a score of 10 was given if the result was precisely 1.0, while a result of
either 1.25 or 0.75 received zero points. This implied that any divergence greater than 0.25
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was undesirable and received no points. Points for the results between these values were
allocated using linear interpolation. Regarding the variance of the results, a correlation
coefficient of 0.0 yielded 10 points, while a value of 0.25 received none, with all the other
scores determined via linear interpolation. The points associated with the count of the
additional variables were distributed so that having only two extra variables compared to
the uniform element calculation yielded 10 points, with every additional variable reducing
the score by 1. If the methodology required computing 12 additional variables, it was given
zero points. According to this system, Table 16 presents each methodology’s individual
and total weighted scores. Based on the points earned for the most realistic tapering ratios,
γ = 1.0–γ =6.0, the method developed by Lee et al. [8] scored the highest. This was mainly
due to the simplicity of this method while maintaining a reasonable deviation from the
reference methodology. When the range of the observed tapering ratios was extended
to γ = 8.0, the reference methodology took the top spot, with the adapted version of the
methodology suggested by Lee et al. [8] coming in second. This aligned with the philosophy
of the European standards, which permit more straightforward methods for less complex
problems (γ = 1.0–γ = 6.0), accepting a tolerable loss of “precision”, whereas for more
intricate problems (γ = 6.0–γ = 8.0) they mandate more detailed analyses.

Table 16. Assessment and ranking of the applicability of the observed calculation methodologies for
non-uniform members, depending on the examined area of the tapering ratio γ.

γ = 1.00–6.00

Marques
et al. [26] Lee et al. [8] Baptista

et al. [21]
Šapalaš

et al. [32]
Smith [44] Serna

et al. [33]
Lee et al. [8]

—mod.

Po
in

ts

Mean value 10.00 9.84 7.68 8.23 8.34 9.31 9.84

Coefficient of
variation 10.00 4.72 5.21 3.30 4.65 6.49 4.72

Number of
variables 0.00 10.00 9.00 8.00 9.00 0.00 10.00

Total (Weighted) 7.50 8.60 7.39 6.94 7.58 6.28 8.60

Rank 3. 1. 4. 5. 2. 6. 1.

γ = 1.00–8.00

Marques
et al. [26] Lee et al. [8] Baptista

et al. [21]
Šapalaš

et al. [32]
Smith [44] Serna et al.

[33]
Lee et al. [8]

—mod.

Po
in

ts

Mean value 10.00 3.25 4.95 5.51 9.40 7.79

Coefficient of
variation 10.00 0.00 0.74 2.11 5.80 3.02

Number of
variables 0.00 10.00 8.00 9.00 0.00 10.00

Total (Weighted) 7.50 4.13 4.66 5.53 6.15 7.15

Rank 1. 6. 5. 4. 3. 2.

5. Conclusions

The presented research highlights the complexity of calculating the buckling resis-
tance for tapered members. The findings can guide structural engineers in selecting the
appropriate calculation methodologies for specific scenarios and help bridge the existing
gap in design standards. Future research should be focused on conducting experiments to
validate these findings further and refine these methodologies.

In conclusion, our study on the buckling resistance of members with varying cross-
sections revealed several significant findings and implications.

• Regulatory gap: Modern standards, such as EN 1993 and AISC 360, lack clear guide-
lines for calculating the buckling resistance of members with variable cross-sections.
This regulatory gap often causes engineers to make conservative assumptions, result-
ing in suboptimal designs.
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• Relevance of the issue: Recent research in well-cited journals highlight the continued
relevance and importance of addressing the challenges associated with variable cross-
section members.

• Calculation proposals: Several calculation methodologies have been proposed for non-
uniform elements, each with unique strengths and limitations. These methodologies
include the works by Lee et al. [8], Baptista et al. [21], Šapalas et al. [32], Smith [44],
Serna et al. [33], and Marques et al. [26].

• Discrepancies across the methodologies: Through an extensive parametric analysis, we
observed discrepancies in the calculated buckling resistance of non-uniform members,
especially with varying tapering ratios and slenderness values. These variations
were particularly pronounced for medium-slenderness members and decreased as the
tapering ratio increased.

• Optimal tapering ratios: The optimal tapering ratio for the resistance-to-mass gain
differed depending on the slenderness category. For low-slenderness members, ratios
below γ = 3.0 were economically optimal, while for medium-slenderness members,
γ = 1.25 provided the best balance between the resistance and mass gain. High-
slenderness members saw a more significant increase in the resistance with the taper-
ing ratio.

• Comparison with the benchmark method: Compared to the benchmark method
(Marques et al. [26]), various calculation methods projected lower resistances for low
to medium-slenderness members. However, beyond a tapering ratio of γ = 3.0, they
predicted higher resistances than the benchmark. The largest discrepancies from the
mean occurred with high tapering ratios and slenderness values, indicating potential
calibration issues for these scenarios.

• Comparison with the numerical models: Our study indicated that, when compared
to the ANSYS numerical models, some calculation methods tended to predict lower
reduction factors and buckling resistances, especially for a lower slenderness, while
Baptista et al.’s [21] method tended to overestimate these values in that slenderness range.

• Applicability assessment: A scoring system was applied to evaluate the applicability
of the methodologies. Lee et al.’s method scored the highest for the tapering ratios of
γ = 1.0–6.0 due to its simplicity and proximity to the benchmark method (Marques
et al. [26]). Extending the tapering range to γ = 8.0, Marques et al.’s [26] method
became the most applicable. This aligned with the European norms, which prefer
straightforward methods for less complex scenarios (γ = 1.0–γ = 6.0) but require
detailed analyses for more complex problems (γ = 6.0–γ = 8.0).
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