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Abstract: Over the course of the last twenty years, building information modeling (BIM) has emerged
as a firmly established construction methodology integrating fundamental principles. The implemen-
tation of BIM methodologies possesses the capability to augment the attainment of quality, cost, and
schedule objectives in construction endeavors. Notwithstanding the widespread adoption of BIM
in the construction sector, the execution of BIM-related tasks frequently suffers from the absence of
established methodologies. The objective of this study was to create a BIM application model through
an examination of the correlation between BIM integration and the achievement of overall project
success (OPS) in construction endeavors. In order to develop the BIM application model, feedback
was solicited from a cohort of fourteen industry experts who assessed a range of BIM activities in
light of prior research. The data that were gathered underwent exploratory factor analysis (EFA)
in order to authenticate the results acquired from the expert interviews. Furthermore, construction
professionals participated in structured surveys in order to evaluate the importance of said BIM prac-
tices. This study utilized partial least squares–structural equation modeling (PLS-SEM) to ascertain
and authenticate the underlying framework and correlations between BIM implementation and OPS.
The findings indicate a moderate correlation between the implementation of BIM and the success of a
project wherein BIM is responsible for approximately 52% of the project’s overall success. To optimize
project outcomes, it is recommended that construction companies prioritize the implementation of
BIM practices. This study highlights the correlation between the utilization of BIM and favorable
project results, emphasizing the necessity for the construction sector to adopt BIM as a revolutionary
instrument to attain enhanced project achievements.

Keywords: building information modeling (BIM); success of project; construction projects; partial
least squares (PLS); structural equation modeling (SEM)

1. Introduction

In certain emerging nations, in order to meet national economic goals, significant
changes have occurred in the building industry [1]. Regardless, the building sector in
these nations could be more competitive, which is due to its inability to fulfill global
standards for sustainable development. Typically, construction projects are confronted by
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various obstacles, including noncompletion, delays in schedule, expense overruns, low
standards, and a high likelihood of failure to achieve the desired results [2]. Due to the
restricted quantity of capital available in these markets, some projects might be postponed
or canceled [3].

The construction sector needs to satisfy the needs of its governments, customers, and
society and catch up to other sectors and their counterparts [4]. Given the disparities in eco-
nomic and social aspects faced by this sector, construction is always afflicted with the same
overlooked issues. Indeed, low salaries, large employment losses, and potential threats
create a market with a high threat level [5]. Significant currency fluctuations (uncertainty),
a shortage of knowledgeably made business decisions, and financing model constraints
contribute to the risk [6]. In a larger sense, the primary causes of project delays have
been highlighted [7]: construction financing challenges, client (owner) discrepancies about
secure payment, design modifications, and a shortage of effective building supervision.
BIM is critical in light of the abovementioned facts. BIM is a comprehensive process for
creating and managing information about a built resource. BIM organizes and combines
information from several disciplines to offer a digital picture of a resource’s full life, from
planning, design, and building to procedures [8]. This model has been verified as a tool
whose use starts in the planning phase and concludes in the execution stage.

BIM seeks to decrease wasteful expenditures by integrating them into sustainable
development [9]. According to Hadzaman, Takim, and Nawawi, BIM is an effective method
used in most industrialized nations to address the abovementioned challenges [10]. In the
current building business, BIM’s benefits are gaining popularity [11]. It seeks to increase
cost-effectiveness and efficiency to maximize production without sacrificing quality [12].
In developing nations, BIM adoption is quite low. According to Dowsett and Harty, while
the demand for BIM is increasing in these nations, the reaction on the ground needs to be
improved to alter the market dynamics of the building industry [13].

While BIM is widely used in many countries, its application in emerging nations is
limited, as shown by Maqsoom et al., and the Malaysian building sector is no anomaly [14].
Despite the paucity of studies in the relevant literature, it has been shown that there
needs to be more comprehensive research examining the degree of BIM understanding
and implementation [15]. It has been noted that most construction players need more
knowledge about BIM, and this lack of knowledge hinders the execution of BIM operations.
Furthermore, despite the low awareness, past research demonstrates that practitioners
need to gain more knowledge of the implementation idea (i.e., BIM) under consideration.
Examples include BIM [13], building information modeling, and evaluation of the drivers
of the logistics activities that enhance its results [16], with the three studies completed
using SEM. Pham et al. investigated the adoption of risk management using descriptive
statistics [17]. Utilizing the PLS (partial least squares) modeling method, the present
study examines the mathematical connection between the implementation of BIM and
overall project success (OPS). This study may support decision makers in the success of
their engineering construction plans by avoiding needless expenses and enhancing quality
due to appropriate BIM—building information modeling—utilization. The importance
of this research is considerable for the building sector since BIM’s significance needs to
be understood.

Overall, the objective of this study is to examine the correlation between the adoption
of BIM and the achievement of OPS in the context of construction projects. The imple-
mentation of BIM methodologies has demonstrated promising outcomes in enhancing the
attainment of objectives related to quality, cost, and schedule in the construction sector. The
absence of established methodologies for the implementation of BIM poses a significant
obstacle. The present investigation endeavors to address this void by constructing a BIM
application model that is grounded in expert assessments and methodical surveys. This
research has significant implications for construction companies, as it provides guidance
for the adoption and effective utilization of BIM practices. The manuscript commences
with a comprehensive review of the relevant literature, followed by a detailed exposition of
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the methodology employed. The ensuing section presents the findings of the study, which
are subsequently discussed in depth. Finally, the paper concludes with a set of recommen-
dations that are intended to be of practical value to stakeholders of construction projects.

2. Literature Review
2.1. BIM Activity Measurements

BIM is a strategy for increasing the productivity of a project characterized by a program
that is unique, advanced, difficult, or problematic [18]. This method is evaluated based on
its structural and organizational characteristics, as well as its interdisciplinary analysis and
functional testing [19]. BIM efforts ultimately increased safety, pricing, competitiveness, and
good market image [13]. Historically, BIM research has been organized into the following
stages: knowledge, functions, creativity, evaluation, normalization, and regulations. These
steps are the primary stage to implementing the BIM [20]. The activities that take place
throughout each of the six stages of arranging the BIM workshop are outlined in Table 1.

Table 1. BIM activities in construction.

BIM Stages Assigned Code Activities References

Knowledge

BIM.SK1 BIM allows diverse teams to communicate and exchange information in real time more
efficiently. This facilitates information sharing and improved decision making. [18,21,22]

BIM.SK2 BIM collects information about building components, materials, and systems that may be
used to advise future developments. [23–25]

BIM.SK3 BIM models may be used to simulate various situations and evaluate the performance of
various design alternatives. [26]

BIM.SK4 BIM may be used to provide training and instructional resources that aid in the
development of the knowledge and abilities of construction professionals. [13]

BIM.SK5 BIM models may be used throughout the building process to gather and evaluate data. [13]

Function

BIM.SF1 BIM may be used to develop comprehensive construction schedules that include design,
engineering, and construction operations. [13]

BIM.SF2 BIM may be used to develop precise and thorough cost estimates that take into
consideration the number and kind of materials needed, as well as labor expenses. [2,26,27]

BIM.SF3 BIM may be used to simulate building performance and evaluate the operation of various
systems and components. [4,5,28]

BIM.SF4 BIM may be used to generate safety plans that detect possible construction hazards
and dangers. [1,29]

BIM.SF5 Building information modeling (BIM) models may be used to assist the continuous
management and repair of buildings and other infrastructure. [6,30]

Evaluation

BIM.SE1 By simulating multiple scenarios and evaluating the effect of different design alternatives,
BIM may be used to analyze the environmental impact of building projects. [3,7,8]

BIM.SE2 BIM may be used to quantify the embodied energy and carbon footprint of a building by
combining information on building materials, systems, and components. [31]

BIM.SE3 When buildings and infrastructure have been created, BIM may be used to analyze
their performance. [32–34]

Creativity

BIM.SC1 BIM may be used to model construction scenarios and detect possible clashes or conflicts
between various building systems. [9,11]

BIM.SC2 BIM may be used to construct three-dimensional models of buildings and infrastructure
that can be used to see and simulate various design alternatives. [10,12,35]

BIM.SC3 Before building starts, BIM may help designers and builders explore creative concepts and
identify possible obstacles. [18]

Regulations

BIM.SR1 BIM enables the construction of an efficient and legally enforceable mechanism for
conflict settlements. [20,36,37]

BIM.SR2 Adopting BIM necessitates not just a departure from traditional practices but also a change
in one’s approach to technical matters. [38,39]

BIM.SR3 Follow-up an action plan for BIM output [13]

Normalization

BIM.SN1 BIM may be used to standardize building procedures, making it simpler for construction
teams to collaborate and lowering the likelihood of mistakes or miscommunications. [20]

BIM.SN2 Standardization by BIM may lessen the possibility of project-impacting delays, cost
overruns, and other difficulties. [16,40]

BIM.SN3
BIM’s unified platform for exchanging information and collaborating on design and

construction may guarantee that all parties are on the same page and working toward the
same objectives.

[13]
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2.2. OPS Measurement

The successful completion of the project had evolved into a universal need within
the building and construction sector. For this reason, it is essential for all parties involved
in the project, including consumers, designers, and consultants, to have a solid grasp of
what constitutes a successful endeavor. Alomari, Gambatese, and Anderson developed
a hierarchical model that validated the importance of cost, quality, and timeliness as
primary goals for productive building projects [24]. The hierarchical prototype explains
the intervention of a star or success factor measurement, which is the principal objective of
a productive construction project [41,42]. The essential aim of a finished building project,
along with the life cycle times, excellence, and cost as key objectives in building projects,
are the time, cost, and quality of the ultimate hierarchical point, respectively. According to
Giel, Issa, Olbina, Tirunagari, and Kone, the factors that impact the accomplishment of a
construction project are shown in Table 2 [43,44].

Table 2. Project success factors.

Cost Time Quality

Enhance the project’s profitability delivering the job on schedule Improve conformity to specification

Increase the financial flow of the project Delivering on time reduces variation
order implementation time.

Availability of means to meet a certain
quality standard

Reduce costs of order variations Increase resource availability as expected
across the project duration

delivering projects following the quality
of raw materials and equipment

2.3. The Connection between BIM Application and OPS

In the earlier period, scholars evaluated the efficiency of construction project manage-
ment in facilitating the accomplishment of construction projects. However, recognizing
the project’s victory was contingent on the practical approach to assessing the project.
BIM is the tool that contributes to the project’s success. It was determined that BIM had
achieved a degree of maturity where the content and format of the workshop findings
were adequate [45]. According to Ibrahim, Esa, and Kamal, the dynamic nature of projects
in recent years necessitates new and novel concepts that rely on the collaborative efforts
of project participants to increase the project’s value [46]. BIM may decide and manage
forthcoming issues for these project innovations to prevent disputes and strengthen their
concepts [47].

Regarding overall performance and project completion, the influence of BIM on
workers and enterprises varies from the prior research. In other words, BIM may have a
systemic impact on the effectiveness of businesses by identifying the ideal value [48].

Prior research has examined the correlation between BIM and the efficacy of con-
struction endeavors. Numerous scholarly investigations have examined the potential
advantages of implementing BIM, including enhanced collaboration, improved project
coordination, and decreased instances of errors and rework [2,3,39,49]. The studies men-
tioned above have yielded encouraging findings, indicating that BIM has the potential to
exert a positive influence on project outcomes [6,25,49].

The significance of researching the relationship between BIM implementation and
OPS stems from the study’s contribution to the existing body of information on the issue in
a newly uncharted situation. In addition, to the finest of our knowledge, such empirical
research is one of the first conducted inside the construction environment. The research
also sheds light on the effect of BIM operations across the various stages on the OPS in
the construction sector. As stated by Lim and Latief, one method to explain the relevance
of a study’s contribution is to throw additional theoretical insight into the phenomena
under examination, such as BIM, in a new national setting, such as BIM [50]. Nevertheless,
the current research distinguishes itself through its unique methodological approach. The
present study employs an SEM methodology to comprehensively analyze the association
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between BIM and the achievement of project success. SEM enables the comprehensive
analysis of intricate associations among multiple variables concurrently, thereby facilitating
a more comprehensive and nuanced comprehension of the impact of BIM on the success
of construction projects. This study seeks to utilize SEM to examine the complex relation-
ships among different factors related to BIM and the achievement of project success [2,3].
This approach effectively responds to the necessity for a more thorough examination. It
substantially contributes to the current body of knowledge in the realm of construction
project management and BIM implementation. Figure 1 depicts the conceptual model
demonstrating the investigation’s proposed route (H1).

Appl. Sci. 2023, 13, x FOR PEER REVIEW  5  of  25 
 

study’s contribution is to throw additional theoretical insight into the phenomena under 

examination, such as BIM, in a new national setting, such as BIM [50]. Nevertheless, the 

current  research distinguishes  itself  through  its unique methodological  approach. The 

present study employs an SEM methodology to comprehensively analyze the association 

between BIM and  the achievement of project success. SEM enables  the comprehensive 

analysis of intricate associations among multiple variables concurrently, thereby facilitat‐

ing a more comprehensive and nuanced comprehension of the impact of BIM on the suc‐

cess of construction projects. This study seeks to utilize SEM to examine the complex re‐

lationships among different factors related to BIM and the achievement of project success 

[2,3]. This approach effectively responds to the necessity for a more thorough examina‐

tion. It substantially contributes to the current body of knowledge  in the realm of con‐

struction project management and BIM implementation. Figure 1 depicts the conceptual 

model demonstrating the investigation’s proposed route (H1). 

 

Figure 1. Impact of BIM activity adoption on OPS. 

3. Approach to Research 

According to past studies, there are few research approaches for BIM tolerance and 

regulatory emphasis at the macro  level  [19,31]. As a result, this research  included two‐

stage questionnaires. The first step is a pilot study, a standard procedure for validating a 

measurement instrument before its use in primary research [44]. The second step of testing 

the theoretical hypothesis is the primary research—the first question aimed to fulfill the 

objective of evaluating  the significant  factors  for structure model development. At  the 

same time, the second main questionnaire fulfilled the development of a structure model 

between BIM implementation and OPS. 

The theoretical modeling begins with the creation of some research strategy. The the‐

oretical modeling is the overview of a research topic investigation used for developing 

intermediary theories evaluated with actual data. The conceptual modeling approach con‐

sists of three steps: (1) identifying the components of the model, (2) classifying these con‐

structs, and (3) describing the relations between these constructs [43]. Figure 1 depicts the 

model outcomes that followed this procedure. Figure 2 illustrates the study design for this 

study. To characterize the model’s constructions, 14 professionals in the building industry 

were interviewed to verify these activities and categorize them according to Table 1. These 

professionals currently work as project managers in construction projects in Malaysia and 

have experience of at least ten years in their field. Also, it was essential to interview only 

project managers with experience working  in project environments supported by BIM. 

The interviews were conducted from 15–25 January 2023. 

Figure 1. Impact of BIM activity adoption on OPS.

3. Approach to Research

According to past studies, there are few research approaches for BIM tolerance and
regulatory emphasis at the macro level [19,31]. As a result, this research included two-
stage questionnaires. The first step is a pilot study, a standard procedure for validating a
measurement instrument before its use in primary research [44]. The second step of testing
the theoretical hypothesis is the primary research—the first question aimed to fulfill the
objective of evaluating the significant factors for structure model development. At the
same time, the second main questionnaire fulfilled the development of a structure model
between BIM implementation and OPS.

The theoretical modeling begins with the creation of some research strategy. The
theoretical modeling is the overview of a research topic investigation used for developing
intermediary theories evaluated with actual data. The conceptual modeling approach
consists of three steps: (1) identifying the components of the model, (2) classifying these
constructs, and (3) describing the relations between these constructs [43]. Figure 1 depicts
the model outcomes that followed this procedure. Figure 2 illustrates the study design
for this study. To characterize the model’s constructions, 14 professionals in the building
industry were interviewed to verify these activities and categorize them according to Table 1.
These professionals currently work as project managers in construction projects in Malaysia
and have experience of at least ten years in their field. Also, it was essential to interview
only project managers with experience working in project environments supported by BIM.
The interviews were conducted from 15–25 January 2023.

3.1. Pilot Study

Pilot research was conducted using exploratory factor analysis (EFA) to investigate
the previously described categories by delivering the first questionnaire to construction
experts. According to Ahsan et al. [51], the research samples for the EFA examination
should range between 150 and 300. Nonetheless, Asadi et al. [52] claimed little agreement
among academics over the sample size for factor analysis, although they encouraged
using a larger sample. Pham et al. and Abdel-Hamid and Abdelhaleem stated that factor
examination is acceptable for 20–50 variables; meanwhile, individual factors cannot be
accurately defined if the number of variables exceeds this threshold [17,53]. Nonetheless,
research revealed that fewer variables might be employed if the sample size is large [24].
The sample size utilized for this investigation was 200 as an illustrative sample within
acceptable limits [25]. Respondents were involved based on their working experience in
Malaysia’s construction industry, especially deploying BIM in routing project management.
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The respondents’ data were obtained from official online resources in the construction
sector. The pilot study was conducted from 1–20 February 2023.
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3.2. Main Questionnaire

An efficient sectional survey was developed based on cumulative findings of the
research-relevant material investigation. Permitting preliminary interviews and the Ex-
ploratory Factor Analysis (EFA) assessment (Questionnaire Form 1), adjustments and then
categorizations were made to the activity classes. The study was conducted in Malaysia,
namely in Perak. To measure the effect of BIM activities and OPS questions, many prospec-
tive participants in the construction industry were asked to complete Questionnaire 2. This
questionnaire was constructed with four major sections: the respondent’s demographic pro-
file, BIM activities (Table 1), overall project success variables (cost, period, and excellence),
and open-ended queries to identify additional activities considered critical by respondents.
The respondent characteristics were kept the same for the participants, and the recruitment
in the survey was also performed similarly to the pilot survey. The primary questionnaire
survey was conducted from 22 February–15 March 2023.

3.3. Analytical Approach

To examine how BIM affects construction project success, four models adaptive by the
literature body were assessed and compared by top options generated by applying BIM
to create a simulation model for productive construction development: MLR (Multiple
linear regression), SD (system dynamics), SEM (structural equation modeling), and ANN
(artificial neural network) methods. The association between non-observed variables has
prevented the adoption of the regression equation. This severely limits the application of
the regression equation [26].

The system dynamics could not be used, since there was no temporal link in the data
(i.e., the information was not time-related). The fundamental goal of the study was to
look at how BIM may be used to apply OPS, and the ANN is indeed a device used for
making predictions. The SEM method may be used to characterize the connection among
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as many unobservable and observable factors as the range of the research permits. SEM is
an efficient tool for handling changing mistakes, according to Mostafa et al. [2]. This study
used SEM to develop a model to establish the connection between BIM (activities) and OPS.
Da Silva et al. [27] noted that although hypothesis testing procedures have been universally
accepted, SEM has become a well-established non-experimental scientific method. The
use of articles from the Information Management (MI) Quarterly has been shown to be an
effective method over time, as Ibrahim et al. [28] also agreed.

Moreover, SEM is a popular and extensively utilized source of information in the
social sciences. The research used the SEM approach proposed by Tariq et al. [4] because
of its prominent application in the building industry. The PLS model, incorporating
both formative and reflective elements, was also used to analyze the activities in BIM
phases and their effect on OPS to establish the cause-and-effect relationship between them.
When employing PLS, the measuring model outlines the link between the construct (BIM
application) and seen indicators, as stated by Alaloul et al. [5].

Further, Covariance-Based Structural Equation Modeling (CB-SEM) and PLS-SEM are
two statistical techniques commonly employed in structural equation modeling [26]. The
CB-SEM technique involves estimating model parameters by minimizing the difference
between the observed covariance matrices and the covariance matrices that the model
implies. PLS-SEM is a statistical technique that prioritizes estimating latent variables
and their interrelationships by maximizing explained variance. PLS-SEM is considered
a more appropriate statistical technique for research studies with smaller sample sizes,
non-normally distributed data, and when the focus is on latent variables [2]. The researcher
likely opted for PLS-SEM as the analytical tool in this investigation owing to its adaptability
in managing limited sample sizes, non-parametric data distributions, and the prioritization
of latent variables, which correspond with the research aims and data attributes.

4. Results
4.1. Demographic Details

Figure 3 indicates demographic details. Three essential groups were chosen for the
questionnaire, contractors, consultants, and clients, with architects, surveyors, civil, elec-
trical, mechanical engineers, and other subcategories of these professions/occupations.
The percentage of replies based on work span was stated as follows: the maximum as-
sessment response was 30.0% with 15 to 20 years of experience, while 25.4% had between
10 and 15 years of experience. A total of 12.1% of employees had fewer than five years
of practice or experience. These findings indicate that respondents had the required ex-
pertise and expertise to review the BIM elements, creating a high degree of trust in their
contribution and the validity of the findings. Figure 3 indicates that most participants
(54.1%) were civil engineers, followed by quantity engineers (18.2%). Totals of 23%, 44.5%,
and 15% of respondents had B.Sc. (bachelor’s in sciences), MS (master’s in sciences), and
Ph.D. degrees, respectively.

Due to the novelty of BIM in Malaysia, to access the required sub-population, stratified
sampling was utilized [23]. This method was offered to assist the writers in gathering
the most trustworthy and accurate data possible, given that this survey focuses on BIM.
Respondents received BIM activities based on their information and expertise utilizing
a 5-point Likert scale (5—strongly agree, 4—agree, 3—neutral, 2—disagree, 1—strongly
disagree), which has been used in several prior BIM studies [54]. This gave participants
various replies depending on their expertise with construction schemes. The study’s
purpose was to determine the sample size. For a standard distribution curve, an illustrative
examination, such as the mean, mode, and median, would need more than thirty examples.

Nonetheless, Harris decided that a minimum sample size of 200 would ensure the
validity of SEM [55]. It was claimed that a particular requirement of a model of the
complex route should have a sample size of 200 or above, although Sánchez and Serrano
recommended that the sample size should be greater than 100, preferably more than
200 [56]. Because of the SEM methodology used in this study, 230 among 340 construction
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experts were contacted separately, and participation in the analysis of SEM was accepted.
It is important to note that the size of the sample utilized for this research is larger than
those used in the earlier BIM studies by Dinis et al. (231 respondents); Bughio et al. (2018)
(330 respondents); and Manzoor, Othman, and Kang et al. (sample size of 285) [13,20].
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They constituted an estimated 68% response rate. For this kind of inquiry, this rate
of return is considered adequate. Because of the customized strategy and the extended
duration (160 days) given for gathering data, which began in the mid of May 2021, the
response rate was very high. There were 217 valid responses (13 were deemed incomplete
and discarded). It is essential to highlight that the degree of knowledge among Malaysian
construction experts is more significant (60.8%) than in a previous survey (54%). This
disparity may be attributable to their lower sample size (40 respondents) than the present
survey’s (217 respondents), which provides a high confidence level [57]. It is more possible,
particularly in sectors with a significant concentration of construction professionals, to
gather the views of qualified practitioners from the general community.

4.2. Descrciptive Statistics

The presented table (Table 3) displays descriptive statistics of ratings provided by
200 respondents on diverse variables associated with BIM implementation. The mean
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values denote the arithmetic mean of the scores for each variable, whereas the standard
deviation signifies the degree of variability or dispersion around the mean [18,54]. The
variance is a statistical metric that accurately indicates the extent to which scores are dis-
persed. Skewness values indicate the symmetry of a distribution, whereby negative values
denote left-skewness and positive values denote right-skewness. Using descriptive statis-
tics provides valuable insights into the respondents’ ratings, the degree of variability, and
the distribution characteristics of the variables [2,57]. This approach concisely summarizes
the data’s central tendency, dispersion, and skewness.

Table 3. Descriptive statistics.

Variable
N Mean Std. Deviation Variance Skewness

Statistic Statistic Statistic Statistic Statistic Std. Error

BIM.SK1 200 3.611 0.6158 0.379 −0.328 0.172

BIM.SK2 200 3.504 0.5762 0.332 −0.223 0.172

BIM.SK3 200 3.586 0.6664 0.444 −0.114 0.172

BIM.SK4 200 3.541 0.6311 0.398 −0.105 0.172

BIM.SK5 200 3.559 0.5871 0.345 0.041 0.172

BIM.SF1 200 3.493 0.6595 0.435 0.122 0.172

BIM.SF2 200 3.494 0.6558 0.430 0.073 0.172

BIM.SF3 200 3.473 0.7075 0.501 −0.003 0.172

BIM.SF4 200 3.444 0.6981 0.487 0.117 0.172

BIM.SF5 200 3.482 0.6926 0.480 0.060 0.172

BIM.SE1 200 3.5590 0.63000 0.397 −0.103 0.172

BIM.SE2 200 3.633 0.6866 0.471 0.117 0.172

BIM.SE3 200 3.494 0.7156 0.512 0.353 0.172

BIM.SC1 200 3.474 0.7152 0.511 0.397 0.172

BIM.SC2 200 3.457 0.7061 0.499 0.414 0.172

BIM.SC3 200 3.438 0.7216 0.521 0.413 0.172

BIM.SR1 200 3.420 0.7566 0.572 0.492 0.172

BIM.SR2 200 3.490 0.7634 0.583 0.347 0.172

BIM.SR3 200 3.433 0.7139 0.510 0.341 0.172

BIM.SN1 200 3.371 0.7646 0.585 0.493 0.172

BIM.SN2 200 3.478 0.8252 0.681 0.221 0.172

BIM.SN3 200 3.5170 0.74598 0.556 0.115 0.172

4.3. Normality

The tabulated data present the outcomes of the Shapiro–Wilk normality examination
performed on the BIM-implementation-associated variables. The Shapiro–Wilk test is a
statistical tool used to evaluate the degree of deviation of data from a normal distribution.
The degrees of freedom are represented by the variable “df”, while the p-value is displayed
in the “Sig.” column [58]. The findings suggest significant deviations from normality as
all variables, including BIM.SK1 to BIM.SN3, exhibit p-values below 0.05, as indicated in
Table 4. Consequently, the distribution of data of these variables is non-normal [58]. The
statement mentioned above suggests that it is crucial to consider the non-normality of
variables during their analysis and employ suitable statistical methodologies capable of
accommodating non-normal data.



Appl. Sci. 2023, 13, 9018 10 of 23

Table 4. Normality test results.

Shapiro–Wilk

Statistic df Sig.

BIM.SK1 0.975 200 0.001

BIM.SK2 0.983 200 0.015

BIM.SK3 0.984 200 0.020

BIM.SK4 0.981 200 0.009

BIM.SK5 0.983 200 0.015

BIM.SF1 0.977 200 0.002

BIM.SF2 0.982 200 0.012

BIM.SF3 0.979 200 0.004

BIM.SF4 0.977 200 0.003

BIM.SF5 0.981 200 0.010

BIM.SE1 0.980 200 0.006

BIM.SE2 0.976 200 0.002

BIM.SE3 0.967 200 0.000

BIM.SC1 0.964 200 0.000

BIM.SC2 0.965 200 0.000

BIM.SC3 0.964 200 0.000

BIM.SR1 0.950 200 0.000

BIM.SR2 0.963 200 0.000

BIM.SR3 0.971 200 0.000

BIM.SN1 0.953 200 0.000

BIM.SN2 0.961 200 0.000

BIM.SN3 0.971 200 0.000

4.4. Identification and Classification of the Model’s Constructs

Using an EFA, a factor structure of 22 points is pertinent for BIM tasks and is indeed
studied, as indicated in Table 5. Several proven factorability characteristics were employed
in the construction of the relationship. The Kaiser–Meyer–Olkin (KMO) test is frequently
used to examine whether or not the incomplete connections among variables are minimal
(Sharma, 1996). According to Chegu Badrinath and Hsieh, the KMO index for practical
factor analysis spans from 0 to 1, with a lower limit of 0.6 [29]. The correlation matrix can
also be determined to be an identity matrix using Bartlett’s sphericity test [59,60].

Almarri, Aljarman, and Boussabaine proposed that the sphericity assessment by
Bartlett must be significant (p < 0.05) for the factor assessment to be deemed suitable [1].
Initial findings indicate that the KMO sample sufficiency measure was 0.819, which was
more than the recommended value of 0.6, and that Bartlett’s test sphericity test was sig-
nificant (×2 (210) = 1255.831, p < 0.05). In addition, the diagonals of the matrix, which
is of anti-image relation, were more extensive than 0.5, validating the addition of every
factor in the analysis [61,62]. This primarily tells us the estimations for each variable’s vari-
ation when all contributing factors are considered, and Fair values (0.3) indicate variables
that do not adequately match the factor solution. All initial communities in the current
investigation were over the threshold.
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Table 5. EFA.

Constituent

1 2 3 4 5 6 Cronbach Alpha

BIM.SK2 0.799

BIM.SK5 0.791

BIM.SK4 0.785 0.860

BIM.SK3 0.779

BIM.SK1 *

BIM.SF3 0.770

BIM.SF5 0.754

BIM.SF4 0.713

BIM.SF1 0.693 0.802

BIM.SF2 0.637

BIM.SE1 0.890

BIM.SE3 0.872 0.882

BIM.SE2 0.858

BIM.SC3 0.871

BIM.SC2 0.849 0.806

BIM.SC1 0.693

BIM.SR1 0.832

BIM.SR2 0.827 0.748

BIM.SR3 0.749

BIM.SN2 0.917

BIM.SN1 0.887 0.828

BIM.SN3 *

Eigen Value 3.157 2.873 2.542 2.372 2.066 1.762

% Variance 13.728 12.489 11.052 10.313 8.983 7.660
* Items excluded due to loading less than 0.6 or cross-loadings. Extraction method: Principal Component Analysis.
Rotation method: Varimax with Kaiser normalization.

Each loading factor was more significant than 0.6. The results of the EFA for all
22 questions yielded six factors with eigenvalues greater than 1. The six eigenvalues and
components explained 64.165% of the total variance. Notably, the final component had
three items (BIM.SN3) that belonged to the normalization phase and were omitted from the
primary research. Similarly, the second component had five items among these five items
(BIM.SK1) that belonged to the knowledge mode and were omitted from the research.

Consequently, on BIM-relevant theory, Table 6 outlines six potential extraction com-
ponents. The reliability statistics for the EFA-extracted factors were determined [63]. The
activities of each factor (group) phase were calculated based on the variable with the most
excellent loading in Table 6’s structure matrix. It demonstrates that the surety assessment
was satisfactory. For freshly established metrics, a Cronbach’s alpha value larger than 0.6 is
satisfactory, while the average value is 0.7, and values greater than 0.8 are very reliable. As
each of the preceding Cronbach’s alpha values was more than 0.7, they were all acceptable.
According to Olugboyega et al., all objects’ average set correlations were more than 0.3,
suggesting stable internal variables [6].
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Table 6. Check for validity and reliability in the construct.

BIM Stages Assigned Code Loadings Cronbach Alpha Composite Reliability AVE

Knowledge

BIM.SK2 0.867 0.853 0.901 0.695

BIM.SK3 0.803 - - -

BIM.SK4 0.807 - - -

BIM.SK5 0.855 - - -

Function

BIM.SF1 0.790 0.802 0.862 0.558

BIM.SF2 0.751 - - -

BIM.SF3 0.695 - - -

BIM.SF4 0.707 - - -

BIM.SF5 0.781 - - -

Evaluation

BIM.SE1 0.919 0.873 0.922 0.798

BIM.SE2 0.914 - - -

BIM.SE3 0.845 - - -

Creativity

BIM.SC1 0.816 0.806 0.885 0.720

BIM.SC2 0.868 - - -

BIM.SC3 0.861 - - -

Regulations

BIM.SR1 0.737 0.736 0.848 0.651

BIM.SR2 0.840 - - -

BIM.SR3 0.841 - - -

Normalization
BIM.SN1 0.921 0.844 0.927 0.865

BIM.SN2 0.939 - - -

4.5. First-Order Measurement Model

The SEM presented in Figure 4 signifies the study’s conceptual model in Figure 1.
From Tables 1 and 2, each BIM and OPS build of the model was described as well classified
based on prior research. Ranjbar et al.’s analysis of model measurement involves the (1) es-
timations and consistency of the first indicator, (2) combined dependability, (3) extracted
average variance (AVE), and (4) discriminant validity [30]. For our study, the PLS method
adheres to Yaakob, Ali, and Radzuan’s recommendations for the weighting scheme, data
measure, maximum iterations, abort criteria, and starting weights [7]. The scale should
only eliminate indicators with outside loadings between 0.40 and 0.65 if doing so signifi-
cantly increases composite reliability and AVE [8]. It was determined that external load
variables smaller than 0.65 did not meet this condition, and, as advised, additional research
was deemed unnecessary [3]. This is the threshold at which about half of the indicator’s
variation is described by its component, and the variance explained exceeds the variance of
error [64]. The external loadings with all variables in the basic measurement model can
be seen in Table 6 and Figure 4. Therefore, all outside loads for items connected to the
stages of knowledge, function, regulations, normalization, creativity, and evaluation had
loading factors more than 0.65 based on the original measurement model, indicating their
substantial effect on the associated constructs.
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Chan, Olawumi, and Ho evaluated the internal reliability for composite reliability
(C.R.) using Cronbach’s alpha, which measures sensitivity concerning the number of
constituents [31]. According to Evans et al., values over 0.65 are suitable for any study, as
well as above 0.50, particularly for exploratory research [32]. The models fall accordingly
to the C.R. > 0.70 criterion and are so accepted, as shown in Table 6. AVE works as a
typical metric for assessing the convergent validity of model structures, with values over
0.50 indicating an excellent convergent value [34]. According to Table 4, all constructions
pass this criterion.

When the idea differs from other conceptions based on observable criteria, discrim-
inant validity has been demonstrated. As a result, the construct is distinct. It captures
events poorly described by other constructs in the model, as seen by the construct’s dis-
criminatory validity, according to Mahamadu, Mahdjoubi, and Booth [33]. There are three
ways to measure discriminant validity: the Nguyen et al. criteria, the HTMT or Heterotrait–
Monotrait ratio of the correlations criterion, and the cross-loading criterion [9]. To measure
the discriminative validity, the square root of the AVE of each construct may be compared
to correlations from one construct with any other construct [57,63]. The square root of
the AVE should be greater than the relationship among latent variables, according to the
concepts of Wang et al. [11].

Table 7 demonstrates that the outcome validates the discriminant validity of the
measurement model. Nonetheless, several academics have rejected Fornell and Larcker’s
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(1981) definition of discriminative validity. Consequently, Hadzaman, Takim, and Nawawi
suggested an alternative way of evaluating discriminative validity (i.e., the HTMT ratio
criterion) [10].

Table 7. (Fornell–Larcker) discriminant validity and the relationship between latent variables.

Construct Cost Creativity Evaluation Function Knowledge Normalization Quality Regulation

Cost

Creativity 0.459

Evaluation 0.375 0.298

Function 0.486 0.281 0.243

Knowledge 0.160 0.447 0.373 0.5

Normalization 0.258 0.176 0.221 0.268 0.258

Quality 0.375 0.298 0.146 0.243 0.373 0.221

Regulation 0.233 0.248 0.090 0.271 0.210 0.163 0.090

Time 0.459 0.241 0.298 0.281 0.447 0.176 0.298 0.248

The HTMT method, which analyzes the relation among two constructs provided
they are reliably calculated, is a unique approach for analyzing the discriminant-variance-
based SEM validity. The HTMT was well employed in this work to analyze the validity
of discriminants.

HTMT values should be less than 0.85 and 0.90, indicating that the two conceptions
are distinct [6]. The HTMT value should be less than 0.90 if the model’s constructs are
conceptually remarkably similar and less than 0.85 if the model’s constructs are conceptually
dissimilar. Table 8 displays the HTMT values for all investigated constructions. Therefore,
the notions have shown sufficient discriminating validity.

Table 8. Analysis score on the HTMT.

Construct Cost Creativity Evaluation Function Knowledge Normalization Quality Regulation Time

Cost 0.862

Creativity 0.378 0.849

Evaluation 0.326 0.251 0.893

Function 0.407 0.23 0.192 0.746

Knowledge 0.979 0.376 0.33 0.423 0.833

Normalization 0.218 0.147 0.188 0.229 0.222 0.93

Quality 0.327 0.251 1 0.192 0.33 0.188 0.893

Regulation 0.182 0.198 0.074 0.174 0.171 0.134 0.074 0.807

Time 0.378 1 0.251 0.23 0.375 0.147 0.251 0.198 0.849

This research also used the cross-loading criteria to establish discriminatory validity.
This approach aims to identify that the indicator loading of certain constructs latent in
nature must be greater than the indicator’s loading for alternative constructs latent in
nature for each row [65,66]. Their constructions’ loading indicators must be more valuable
than the alternative construct. Table 9 reveals that the allocated latent construct indicator
load is more significant from their cross-loadings on varying constructs. Each construct
exhibits a significant degree of one-dimensionality, as seen by the outcome [67].
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Table 9. Cross-loadings (discriminant validity).

Creativity Evaluation Function Knowledge Normalization Regulation Cost Quality Time

BIM.SC1 0.816 0.237 0.244 0.382 0.108 0.196 0.814 0.237 0.379

BIM.SC2 0.868 0.233 0.194 0.291 0.161 0.132 0.867 0.233 0.299

BIM.SC3 0.861 0.162 0.14 0.275 0.103 0.175 0.860 0.162 0.279

BIM.SE1 0.242 0.919 0.165 0.353 0.14 0.073 0.242 0.92 0.348

BIM.SE2 0.194 0.914 0.196 0.341 0.172 0.08 0.194 0.914 0.337

BIM.SE3 0.239 0.845 0.153 0.174 0.197 0.042 0.239 0.843 0.174

BIM.SF1 0.253 0.203 0.79 0.315 0.18 0.128 0.252 0.203 0.301

BIM.SF2 0.142 0.238 0.751 0.274 0.283 0.122 0.141 0.238 0.265

BIM.SF3 0.145 0.019 0.695 0.205 0.034 0.149 0.144 0.018 0.192

BIM.SF4 0.197 0.055 0.707 0.313 0.144 0.157 0.197 0.056 0.295

BIM.SF5 0.116 0.15 0.781 0.439 0.169 0.107 0.116 0.15 0.43

BIM.SK2 0.327 0.334 0.372 0.867 0.182 0.22 0.326 0.335 0.815

BIM.SK3 0.27 0.254 0.361 0.803 0.175 0.093 0.269 0.255 0.664

BIM.SK4 0.297 0.234 0.312 0.807 0.124 0.093 0.297 0.234 0.801

BIM.SK5 0.353 0.271 0.365 0.855 0.252 0.151 0.352 0.271 0.819

BIM.SN1 0.119 0.172 0.174 0.188 0.921 0.125 0.118 0.171 0.188

BIM.SN2 0.152 0.177 0.248 0.224 0.939 0.124 0.152 0.177 0.216

BIM.SR1 0.083 −0.011 0.063 0.166 0.062 0.737 0.083 0.011 0.198

BIM.SR2 0.174 0.077 0.24 0.177 0.13 0.84 0.174 0.077 0.176

BIM.SR3 0.207 0.078 0.186 0.071 0.12 0.84 0.207 0.078 0.074

C1 0.327 0.334 0.372 0.800 0.182 0.22 0.814 0.092 0.275

C2 0.353 0.271 0.365 0.755 0.252 0.151 0.868 0.271 0.218

C3 0.297 0.234 0.312 0.607 0.124 0.093 0.863 0.234 0.131

Q1 0.242 0.401 0.165 0.353 0.14 −0.073 0.242 0.914 0.348

Q2 0.239 0.341 0.153 0.174 0.197 −0.042 0.239 0.843 0.174

Q3 0.194 0.200 0.196 0.141 0.172 −0.08 0.194 0.203 0.037

T1 0.861 0.162 0.14 0.275 0.103 0.175 0.279 0.162 0.885

T2 0.768 0.233 0.194 0.291 0.161 0.132 0.299 0.233 0.869

T3 0.716 0.237 0.244 0.382 0.108 0.196 0.379 0.237 0.831

4.6. Second-Order Measurement Model

Since the primary variables (dependent and independent factors) were second-order
latent factors, the bootstrap method evaluated the significance of every first-order latent
variable. One aspect of implementing BIM was formative, while the project’s success was
reflective [41,42]. Typically, elevated relations are seen among indicators of measurement
models’ anticipation of what still needs to be carried out [68,69]. In addition, according to
Li, Wang, and Alashwal, the significant correlation between formative factors shows po-
tential collinearity [35]. We investigated the collinearity between the construct’s formative
constituents by measuring the value of VIF (variable inflation factor). For this investigation,
we examined collinearity difficulties while interacting with reflective-formative second-
order construct types using internal VIF values [67,70]. Six subscales of BIM activities of
the first order, covering the normalization stage, the regulatory stage, the creative stage,
the knowledge stage, the evaluation stage, and the function stage, exhibited a high-value
co-efficient of the path (exterior weight), as indicated in Table 10. Figure 5, along with
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Table 8, reveals that knowledge stage had the highest outer loading (β = 0.427, p < 0.001),
after the creativity stage (β = 0.376, p < 0.001), evaluation stage (β = 0.334, p < 0.001), the
function stage (β = 0.186, p < 0.001), the normalization stage (β = 0.135, p < 0.001), and the
regulation stage (β = 0.091, p < 0.001). All VIF values were less than 3.5, showing that these
subdomains separately contributed to a higher-order construct.

Table 10. Utilizing bootstrap for testing second-order models in the constructive phase.

Path β S.E. t-Values p-Values VIF

Creativity → BIM Implementation 0.376 0.027 13.892 <0.001 1.23

Evaluation → BIM Implementation 0.334 0.034 9.741 <0.001 1.203

Function → BIM Implementation 0.186 0.017 11.264 <0.001 1.268

Knowledge → BIM Implementation 0.427 0.025 16.858 <0.001 1.451

Normalization → BIM Implementation 0.135 0.023 5.79 <0.001 1.104

Regulation → BIM Implementation 0.091 0.031 2.979 <0.001 1.107
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In this model, the success of the project was seen in the second-order construct, and
outcomes for project success categorized into three subscales, including quality, money,
and schedule, pointed to these subscales as contributing significantly to project success as
second-order variables latent in nature. Valued path coefficients were well over 0.65 and
were crucial, as shown in Table 11.

Table 11. Utilizing bootstrap for testing second-order models in the reflective phase.

Path β S.E. t-Values p-Values

OPS → Cost 0.733 0.042 17.395 <0.001

OPS → Quality 0.669 0.063 10.573 <0.001

OPS → Time 0.808 0.026 31.022 <0.001

4.7. Path Analysis of Structure Model

A method for linear regression is path analysis. It is a method of preference in social
management and science. Likewise, Durdyev et al. stated that path analysis is the primary
method for simultaneously investigating all complicated interactions [20]. Principally, a
structural equation model is used throughout the SEM analysis step. The structural model
could be utilized for evaluating the relation in study components. After fitting the model,
a structural equation model is the second major step in SEM analysis [67]. The structural
model may be utilized by finding the links among variables. The structural model explains
links deeply between variables [71,72]. According to Ayman, Alwan, and McIntyre, the
statistics illustrate the link between exogenous and independent factors and endogenous
or dependent variables [37]. The structural model’s evaluation is predicated mainly on the
overall model fit, followed by the postulated parameter estimations’ magnitude, direction,
and significance. The last step is validating the planned study connection based on the
research assumptions stated in Figure 1. SEM was used to examine the study hypothe-
sis. The influence of BIM deployment on success factors was analyzed using PLS-SEM
following this model’s study framework. Figure 5 depicts the corresponding research
hypothesis model.

Ihe importance of the model’s hypothesis was assessed in the traditional methodology
framework. Again, a random sampling of the primary dataset comprises the bootstrap-
ping procedure to create a fresh sample that is identical in size to the primary samples.
Manzoor et al. verified the dependability of the dataset and their significance levels and,
therefore, the inaccuracy of the derived route coefficients [58]. As illustrated in Figure 5, the
importance of the route is represented by standardized path coefficients (β) and p-values.
The results of the bootstrapping procedure are shown in Figure 5 along with Table 12
as p-values of each path [64]. Utilizing the data, BIM efforts’ influence on the projects’
performance was statistically seeable. Mahamadu et al. found that BIM activities’ impact
on success is favorable and statistically seen (β = 0.9, p < 0.001) [12].

Table 12. Hypotheses and relative strategic paths.

Path β S.E. t-Values p-Values

BIM Implementation → OPS 0.9 0.006 48.3 <0.001

4.8. Explanatory Control of the Structural Model

The findings indicate that the measuring model has good individual item reliability
and computable and discriminant validity. The overall explanatory power of said structural
model may be measured by assessing the variance of the dependent variable that the model
can explain. The PLS technique permitted multiple squared (R2) correlations for relying
on variables within the model. The PLS algorithm indicated that R2 is comparable to a
standard regression [36]. R2 reflects the total amount of variation. The independent factors
within the dependent variable have explained this. Thus, a higher R2 value improves the
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prediction power of a structural model. According to Table 13, the R2 values were computed
in this study by utilizing the smart-PLS method. This model’s primary dependent variable,
project success, had an adjusted R2 of 0.92, indicating that the exogenous latent variable
can predict 92.0% of success of the project. According to Samimpay and Saghatforoush, the
results indicate that the size defined in the BIM application is highly predictive. The change
in R2 when a self-dependent construct is omitted through the model determines if excluded
construct has a significant influence on the relying constructs [39]. Its metric is known as f2

or impact size. The computation of the efficient size is indicated in Equation (1) [38]:

f2 = (R2 include − R2 exclude)/(1 − R2 exclude) (1)

Table 13. R2 values.

Endogenous Latent Variable R2 Adjusted R2 Explained Size

Project Success 0.916 0.92 Highly Predictive

Guidelines for evaluating effect size are f2 0.02, f2 0.15, and f2 0.35, signifying modest,
medium, and high impact sizes of the exogenous construct, respectively. Based on the
conclusion of f2, which indicated that the size of an exogenous construct affects the project’s
outcome, the impact size of BIM activities is vast (f2 = 1.433).

4.9. Predictive Significance of the Structural Model

A critical component of a structural model is its ability to evaluate the model’s predic-
tive validity. The blindfold method confirmed the cross-validated redundancy estimates
for each dependent variable [73]. The results indicate that the Q2 scores (0.91) for project
success had a predictive value greater than zero, indicating that the independent construct
had predictive importance for the dependent construct considered in this research. Table 14
shows that Q2 is greater than 0. Hence, it is reasonable to conclude that the model has a
high prediction accuracy.

Table 14. Predictive relevance results.

Endogenous Latent Variable SSO SSE Q2 (=1 − SSO/SSE)

Project Success 1944.000 1172.371 0.397

4.10. Importance of Performance Matrix Analysis

According to Dowsett and Harty, PLS-SEM proves the relative significance of an
autonomous variable in a route model in explaining the dependent variable [13]. IPMA
expands the findings of PLS-SEM by considering the working of every variable. The
outcomes may be derived from two aspects crucial for management actions: significance
and performance [14]. Utilizing the structural model’s overall impacts (importance) as
well as the mean value for variable scales latent in nature, it is possible to identify crucial
areas for enhancing management operations (or the model’s particular emphasis). In this
research, IPMA served as the dependent variable for BIM activities. The significance and
performance of the exogenous variable (BIM implementation) are shown in Table 15.

Table 15. Indicating importance—total effects for BIM activities.

Predictor Importance Performance

BIM Implementation 1.834 51.263

5. Discussion

Implementing BIM between professionals and their significant operations may signifi-
cantly enhance the success of initiatives. Improved SEM models and the statistical values
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derived from their investigations provide a solid foundation for comprehending relation-
ships between the models presented. As a result of such an analysis and modification
procedure, several intriguing facts emerge.

5.1. Identification Level of Building Projects Success

According to Yaakob, Ali, and Radzuan, construction time is the total number of
days that must be accomplished from the commencement of ground operations until the
project is finished, expressed in months, weeks, or even years [7]. The statistics showed
that the time component had the highest outside loading score, at 0.808. The findings are
consistent with [22], which demonstrated that the time measured inside the client benefit
system contributes to the success of a project and that BIM may shorten the duration of
projects. For instance, introducing BIM in a motorway in Croatia might reduce the project
duration by around 12 months. These numbers represent 6% of the entire budget and
17% of the timeline [18]. The project also depends on the factor of time. It is beneficial
when determining how long a construction project will take to complete, how long it will
take to execute variation orders, whether resources will be available for the project’s life
or duration, and how long it will take to obtain authority approval [73]. According to
Barqawi, Chong, and Jonescu, quality may be a collection of characteristics needed for
services provided by parties involved in building projects and the basis for determining
fitness and customer satisfaction [70].

With an outside loading of 0.73, the quality factor is rated as the second most crucial
element, although it is still modest. Shahid et al. demonstrated that it is still crucial
to the project’s success and is one of the conventional yet subjective metrics of project
success. This conclusion is reinforced by Girginkaya Akdag, and Maqsood, who explored
the application of BIM as a problem-solving tool for the aquatic building sector [20]. The
research results show that BIM can be logically explained by boosting the quality in
determining essential functionality for diverse maritime building assignments. According
to Acquah, Eyiah, and Oteng, cost is one of the fundamental ideas for the execution of
construction projects; it is often determined during the preconstruction phase and may
rely on the client’s financial constraints [19]. The cost factor was rated last, with an outside
loading of 0.669. All indications are examined, and the majority of responders concurred
that financial flow is essential for the success of a project and that BIM may impact cash
flow and lower project costs via careful planning. This conclusion, which was corroborated
by Iqbal et al., indicated that if BIM is appropriately used during the initial phase, capital
costs for construction projects might be reduced by 10–20% [15]. However, Iqbak et al.
asserted that cost is essential considering the capital cost of construction and that all projects
will have continuous operational costs that will be considered during the project planning
phase, which largely determines the project’s success in the end [74].

5.2. Impact of BIM on Project Success

The study identified that general factors quality, productivity, and product functions
are less in construction than in other industries. In addition, it examines BIM’s impact on
building success to enhance the efficiency of construction projects. The correlation between
the dependent and independent variables was performed to determine the impact of BIM
on the project’s success. The data indicate that the deployment of BIM adds 52% to the
project’s success. The BIM implementation has an essential link with the OPS (overall
project success) when the value is more than 0.96, which is significant when the firm or
organization adds one unit of BIM, which boosts project success by 0.96 owing to cost, time,
and quality aspects. Several of the BIM implementation’s outputs would assist project
managers in meeting the client’s cost, quality, and schedule criteria, according to the results.
The earlier mentioned studies demonstrate that by evaluating the building information
modeling efficacy, the success of the project will be impacted by how effectively the project
is managed, which is specified in terms of cost, time, and quality. All findings on the
success of this study were better than expected. The goal of this section has been achieved,



Appl. Sci. 2023, 13, 9018 20 of 23

and it is consistent with earlier research that has shown that construction projects should
prioritize time, quality, and money because these aspects ultimately determine the project’s
success [16]. BIM is widely utilized in the building sector as a supplementary tool to handle
challenges such as limited resources and stringent planning [40].

6. Conclusions

In many nations, BIM largely relies on the building industry, and its use is minimal in
emerging economies. Like several other emerging nations, anomalies in building quality
and discrepancies have been observed in Malaysia, particularly in large projects. To
minimize this problem, BIM tasks are essential to implement. PLS-SEM was used to verify
the correlations between BIM adoption and OPS constructs. In the created structural model,
based on information gathered from 217 building project specialists, a straight path and
nine indirect channels have been confirmed as vital.

Furthermore, the connection between the variables was confirmed via routes between
components and activity items that are both direct and indirect. According to the results,
implementing BIM may reduce unnecessary time and efficiently boost quality, and the time
and quality factor are crucial success factors for the project. The analysis revealed that
knowledge mode has the most significant external weight on the BIM application at 0.427.
Regarding the influence of BIM implementation, the creativity and evaluation phases follow
next with an outside weight of 0.376 and 0.334, respectively. The regulation, normalization,
and function stages tend to have the most negligible impact on BIM implementation
compared to other factors, with outer weights of 0.09, 0.13, and 0.186, respectively.

Consequently, senior management will be able to organize their BIM resources and
group members based on the impact of BIM phases, and their commitment to achieving
outstanding project performance will be enhanced. In addition to completing the project
quickly and improving its quality, the results reveal that BIM impacts the project’s success
in terms of time, cost, and excellence. However, BIM may affect project outcomes, and it
has been shown that BIM implementation can contribute to project success.

The following sections highlight the academic and practical significance of these findings:

• The prior study needs to consider BIM deployment activities and techniques more.
Most empirical research on BIM in emerging countries did not investigate the activities
and procedures that comprise BIM practice.

• By studying the association between BIM implementation and OPS, the current re-
search has contributed to filling this knowledge gap.

• This study improves the understanding of BIM methodologies and activities, con-
tributing to the knowledge of construction engineering management.

• This study offers a platform for future studies by objectively demonstrating that the
mechanism of BIM has a substantial and favorable effect on OPS. It may also contribute
to the corpus of information, leading to more research on the building project.

This study has significant implications for professionals that want to use BIM to ensure
their projects succeed, such as building project owners and contractors. Adopting and
performing the actions, this study may assist all parties in focusing on the project’s purpose
in terms of cost, period, and quality, hence impacting the project’s degree of success.
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