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Abstract
The precise estimation of the shear strength of reinforced concrete walls is critical for structural engineers. This projection,
nevertheless, is exceedingly complicated because of the varied structural geometries, plethora of load cases, and highly
nonlinear relationships between the design requirements and the shear strength. Recent related design code regulations
mostly depend on experimental formulations, which have a variety of constraints and establish low prediction accuracy.
Hence, different soft computing techniques are used in this study to evaluate the shear capacity of reinforced concrete
walls. In particular, developed models for estimating the shear capacity of concrete walls have been investigated, based on
experimental test data accessible in the relevant literature. Adaptive neuro-fuzzy inference system, the integrated genetic
algorithms, and the integrated particle swarm optimization methods were used to optimize the fuzzy model’s membership
function range and the results were compared to the outcomes of random forests (RF) model. To determine the accuracy of
the models, the results were assessed using several indices. Outliers in the anticipated data were identified and replaced with
appropriate values to ensure prediction accuracy. The comparison of the resulting findings with the relevant experimental
data demonstrates the potential of hybrid models to determine the shear capacity of reinforced concrete walls reliably and
effectively. The findings revealed that the RF model with RMSE = 151.89, MAE = 111.52, and R2 = 0.9351 has the best
prediction accuracy. Integrated GAFIS and PSOFIS performed virtually identically and had fewer errors than ANFIS. The
sensitivity analysis shows that the thickness of the wall (bw) and concrete compressive strength ( fc) have the most and the
least effects on shear strength, respectively.

Keywords Soft computing techniques · ANFIS · RF · PSO · Reinforced concrete wall · Shear strength

List of symbols
λ́ Modification factor to represent lightweight con-

crete’s mechanical properties characteristics when
compared to standard weight concrete with the same
compressive strength

f́c Compressive strength of the cylinder concrete
αc Aspect ratio coefficient
α Inclination between compressive load andwall align-

ment
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λ Aspect ratio coefficient
ρx Ratio of reinforcement by longitudinal reinforcement
ρy Transverse reinforcement ratio
σcp Axial compress stress
Acv Effective cross-sectional area of the concrete
Ag Gross area of the wall
ASW Cross-sectional area of shear reinforcement within s
bw Thickness of the wall
CRd,c 0.18 γc (γc equals to 0.15)
d Effective depth of the cross section
fck Characteristic compressive cylinder strength of con-

crete at 28 days
fc Concrete compressive strength ( fc ≈ 0.838 f́c)
Fyt Strength of horizontal bars
Fyv Yield strength of bars at vertical direction of wall
fywd Yield strength of shear reinforcement
hw/lw Height-to-length ratio
hw Height of the wall
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k1 A variable of 0.15 that accounts for the impact of Nu

on the stress pattern
Lw Length of the wall
Mu Moment at the section
Nu Axial load
s Spacing of the horizontal reinforcement bar
Vexp Experimentally shear strength
Vn Predicted the shear strength
Vu Maximum shear force
z Lever of internal forces (≈ 0.9d)

1 Introduction

Reinforced concrete walls (RCW) are widely employed in
structures that are subjected to significant lateral loadings,
such as wind and earthquake loads (Hadzima-Nyarko 2015)
(Nikoo et al. 2017). RCWs frequently function as cantilever
beams with a rigid base, bearing loads down to the foun-
dations (Darwin et al. 2016) (Al-Furjan et al. 2022). These
structural elements are susceptible to fluctuating shear,which
normally achieves its greatest value at the bottom, bending
moments with tensile stress located near the loaded tip and
compressive stress towards the distant extremity, and verti-
cal compression owing to gravity loads. RCWs with a low
height-to-length proportion are mostly governed by shear
load, whereas those with a high height are primarily influ-
enced by bending design specifications.

The design principle of RCW is typically identical to
that of beams. These conventional approaches depend heav-
ily on imprecise inductive calculations, which have several
drawbacks. The ACI318 design code (Committee 1995), for
example, excludes the influence of longitudinal shear rein-
forcement, whereas the Eurocode (Code 2005) implies that
the shear capacity of RCW with a height-to-length propor-
tion of 2 ormore is exclusively dependent on transverse shear
reinforcement. RCW must be constructed to be malleable
in nature. As a result, its mechanical integrity should be
determined by flexure rather than shear. As a result, precise
modelling of the shear strength of RCW is critical (Asgar-
poor et al. 2021) (Keshtegar et al. 2022) (Tabrizikahou et al.
2022).

Nonetheless, given the plethora of structural implementa-
tions and load combos that may occur on an RCW, compre-
hensive knowledge of its structural behaviour is indeed very
complicated (Teng and Chandra 2016) (Piri et al. 2023). For
example, low-rise RCW may have a height-to-length ratio
of less than 2, but taller structures may have a proportion
significantly more than 2 Chandra et al. (2018), (Zhu et al.
2022). RCWmay also have a variety of geometrical layouts,
reinforcing schemes, and gravitational and seismic loads.
Given the complexities of RCW, many laboratory investiga-

Table 1 Algorithm used in modelling the compressive strength of rub-
berized concrete and shear concrete wall

Algorithm Data points References

PSO 209 Baghi and Siavashi (2019)

ANN 369 Nguyen et al. (2021)

RF-based 393 Mangalathu et al. (2020)

GP 254 Gondia et al. (2020)

ANN-AHS, -HS, -GHS 500 Keshtegar et al. (2021)

SVR-RSM 500 Keshtegar et al. (2021)

tions have been undertaken to fully understand its structural
behaviour (Al-Furjan et al. 2022) (Al-Furjan et al. 2022).

One of the fundamental phases in the design of struc-
tural components of reinforced concrete (RC) structures
is the assessment of shear capability. Up to now, many
academics and structural design codes have suggested mul-
tiple mechanical approaches to analyse the shear strength of
RCW (Hadzima-Nyarko et al. 2021) (Kolahchi et al. 2022)
(Tabrizikahou et al. 2022). A simple solution to the prob-
lem involves the structural code or a scientific investigation
that considers numerous factors; nevertheless, both tech-
niques provide significantly varied shear strength findings
(Armaghani et al. 2019) (Marzok et al. 2020) (Luo et al.
2022). The absence of appropriate and dependable exper-
imental or theoretical relationships for evaluating the shear
capacity of RCWs has caused in the last two decades to pique
the attention of academics working with non-deterministic
approaches.

Various researchers used different methods to model the
shear strength of RCWs. Some of the studies are summarized
in Table 1.

The findings of the preceding investigations are undoubt-
edly promising, particularly given the applications of soft
computing models to predict the shear strength of RCWs
is still in their early stages. As a result, this study investi-
gates the use of fuzzy-based techniques (GAFIS, PSOFIS,
and ANFIS) for estimating the shear strength of RCWs. For
network training, a research database is employed that is
accessible in the literature and is concerned with the shear
resistance of RCWs specimens of varied sizes, materials, and
geometric characteristics. Since RF is a powerful prediction
approach that has not been studied in forecasting the shear
strength of RCWs, it is beneficial to compare its capabilities
with GAFIS, PSOFIS, and ANFIS to see which way is best.

The purpose of this research is to create the RF technique
as a reliable and efficient machine-learning model for pre-
dicting the shear strength of RCWs. The application of the
RF model in the prediction of the shear strength of RCWs
might help catch patterns in huge numbers of data obtained
from empirical studies. The results of the created RF are
thoroughly compared with three other robust artificial intel-
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ligence techniques, namely ANFIS, GAFIS, and PSOFIS.
To the authors’ knowledge, this is the very first time the RF
technique has been used to determine the shear strength of
RCWs.

This paper’s novelty stems from its revolutionary way
of evaluating the shear strength of reinforced concrete
walls using soft computing-based methodologies. Tradi-
tional methods for constructing these structures usually rely
on empirical formulations, which have limitations and pro-
duce low forecast precision. This work, on the other hand,
overcomes these difficulties by utilizing the capabilities of
soft computing models.

To increase shear capacity estimation reliability, the fuzzy
model’s membership function range is improved by utilizing
ANFIS, GA, and PSO techniques. Furthermore, the results
of the developed models are compared to those of the RF
model, revealing a novel use of RF in forecasting the shear
strength of reinforced concrete walls.

The research also contributes to resolving the limitations
of standard empirical approaches by providing an analysis
of the key parameters of shear strength and investigating the
use of soft computing models. The findings highlight the sig-
nificance of components such as wall thickness and concrete
compressive strength, supplying significant information to
engineers and designers.

Section 2presents and explains themain parameterswhich
influence the shear strength of RCWs. Section 3 provides a
comprehensive analysis of the state-of-the-art in modelling
RCWs. Section 4 introduces the hybrid and RF methodolo-
gies, including the formulas and modelling layers, as well as
the numerous statistical measures used to compare the differ-
ent models. Section 5 then describes the characteristics of the
innovative modelling techniques used in this work. Section 6
delves deeply into themodel outputs, taking into account reli-
ability, propensity, and variability. Section 7 discusses and
compares the outcomes achieved by various methodologies.
Finally, Sect. 8 illustrates the implications that may be taken
from this research.

2 Influencing parameters

Physical, experimental, numerical, and statistical models are
used to determine the lateral load-bearing capacity of RCWs
inmany building codes, specifications, and regulations.Most
of these design regulations give a variety of layouts and statis-
tical approaches for determining the shear capacity ofRCWs.
In these design codes, the shear strength of the RCWs is gen-
erally ascribed to the concrete (Vc) and reinforcement (Vs)
shear strength and is determined using Eq. 1.

Vu = Vc + Vs (1)

However, to define the concrete and reinforcement shear
strength, there are various ideas. ACI318-14-11 (American
Concrete Institute 2014) proposed Eqs. 2 and 3 to calculate
the values of (Vs) and (Vc).

Vs = Av fytd

s
(2)

Vc = min

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(

0.274λ́
√

f́c + Nu
4lwd

)

hd
[

0.05λ́
√

f́c +
(
0.104λ

√
f́c+0.2 Nu

lwh

)

Mu
Vulw

− 1
2

]

hd
(3)

Additionally, based on ACI318-14-18 (American Con-
crete Institute 2014) the values of (Vs) and (Vc) can be defined
by using Eqs. 4 and 5.

Vs = Acw × ρt fyt (4)

Vc = Acv × αcλ́

√

f́c (5)

Eurocode 8 (Code 2005) introduces Eqs. 6 and 7 to cal-
culate the concrete and reinforcement shear strength.

Vs = ASW

s
z fywd cot α (6)

Vc =
[
CRd,ck (100ρ1 fck)

1
3 + k1σcp

]
bwd

≥
(

0.035k
2
3 f

1
2
ck + k1σcp

)

bwd (7)

Figure 1 illustrates the schematic of the concrete wall and
the influencing parameters on the shear capacity of RCW
such as concrete’s compressive strength, dimension propor-
tion, applied load, transverse and longitudinal reinforcement
proportions, and the wall’s gross area.

According to the formulae provided, the shear strength of
RCWs is determined by the concrete’s compressive strength,
applied load, azimuth and elevation reinforcement propor-
tions, the wall’s cross-sectional area, the ratio of horizontal
and vertical reinforcement and yield strength of the reinforce-
ments. However, investigations by Wood (1990) and, Gulec
et al. (2007) found that the lateral load-carrying capacity
of RCWs results based on these empirical-based equations
can be varied significantly based on different specifications.
Therefore, in this study, different feasible methods are used
to predict the shear capacity of RCWs.

3 Review of RCWmodelling

Chandra et al. (2018) based on 84 different concrete walls
developed a model for estimating the shear capacity of
RCSW. Their results demonstrated that the model predicted
the shear strength with about 0.36 difference (Vexp/Vn =
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Fig. 1 Schematic of the concrete wall and the influencing parameters
studied in this paper

1.36) with a coefficient of variation (CoV) of 0.20. The
suggested technique can also estimate the shear strength of
RC walls with high accuracy over a wide variety of wall
height-to-length ratios, concrete compressive strengths, and
reinforcing percentages in the boundary components.

Baghi and Siavashi (2019) introduced a particle swarm
optimization method for developing a quantitative formula
for estimating the shear strength of RCSW that attributed
to variations in the flexural stress criterion and the propen-
sity of the essential perpendicular fracture, the impact of
vertical and horizontal reinforcement capacity, the boundary
column reinforcement throughout the length, and the dowel
action. The model made use of a dataset that comprises 209
experimental data from the literature. The suggested model
produced an average value of 1.13 with a COV of 33% by
assessing the ratio between the experimental findings and
the analytical predictions (Vexp/Vn). The average values of
Vexp/Vn for the models related to ACI318-14 and Chandra et
al. were 1.08 and 1.17, respectively, with COVs of 52.0 and
47.0%.

Kusunoki et al. (2019) investigated pushover analysis,
which is frequently used to assess failure modes and stress
distribution at the risk ultimate limit. To validate the accuracy
of these functions, they evaluated a large empirical record of
507 RCW trials. The anticipated initial stiffness was dis-
covered to be underestimated, the final flexural and shear
strengths were typically lower than the equivalent actual
numbers, and reliability was dependent on the existence of
boundary columns and the presence of apertures. Likewise,
the anticipated yield and maximum shear strength deforma-
tions appeared to be lower than the empirical values. These

findings underscore the necessity for more precise and pow-
erful prediction techniques.

Nguyen et al. (2021) scrutinized a machine-learning-
based method for estimating the shear resistance of squat
grooved RCW. They contended that available experimental
models in current design codes and documented research
result in considerable discrepancies in estimating shear
capacity. As a consequence, they presented an ANN-based
on 369 tests and 13 input factors gathered from the literature
to more appropriately estimate the shear strength of squat
flangedRCWthan current algorithms. Furthermore, a predic-
tion technique relying on theANN frameworkwas suggested
to estimate the shear capacity of squat flanged walls, and a
graphical interface systemwas developed to aid in functional
design.

Mangalathu et al. (2020) researched the inadequate safety
profitability of RCSW as well as the inadequacy of experi-
mental models for instant failure mode assessment of current
shearwalls. They developed an appropriate statisticalmethod
using eight machine-learning methods based on a database
of 393 empirical findings for shear walls with varied geomet-
ric arrangements. The random forest technique was devised
and shown to be 86% accurate in determining the failure
mechanism of shear walls. The important characteristics
determining the failure mode of shear walls were discovered
to be the wall aspect ratio, boundary element reinforcement
coefficients, and wall length-to-wall thickness proportion.

Gondia et al. (2020) comparedRCSW’s squatwith bound-
ary functions to empirical data from several situations,
accounting for the purported inaccuracy of relevant current
shear strength prediction expressions like ASCE/SEI 43-05.
By employing a dataset of 254 shear walls, genetic pro-
gramming (GP) is used to suggest an expression of shear
strength prediction. The RCSW’s squat with fronting com-
ponents, including suggested inexactness in critical current
shear resistance forecasting terms such as ASCE/ SEI 43-05,
was evaluated using practical data from various circum-
stances.

Keshtegar et al. (2021) presented a hybrid machine intel-
ligence system based on an ANN and an adaptive harmony
search optimization (AHS) method for estimating the final
shear strength of RCWs. Various quantitative measures were
utilized to evaluate the effectiveness of the ANNmodel inte-
grated with AHS (ANN-AHS) to three known experimental
correlations and two ANN models linked with harmony
search (ANN-HS) and global-best harmony search (ANN-
GHS). Their findings showed that the suggested ANN-AHS
model outperformed the ANN-HS and ANN-GHSmodels in
estimating the shear strength of RCW and was more precise
than the recognized experimental equations.

Keshtegar et al. (2021) examined a hybrid model to esti-
mate the shear capacity of RCSW. The proposed modelling
technique (RSM-SVR) is comprised of the integration of the
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Fig. 2 Steps in the RF method

support vector regression (SVR) and response surface model
(RSM) techniques. It was demonstrated that the suggested
RSM-SVRmodelling technique produced more precise esti-
mates of RCSW shear strength. The method accurately
appreciated the effect of the main design factors, exhibit-
ing a consistent trend and significantly decreased ambiguity.
As a result, the suggested model might be used in intelli-
gent creative models and to improve relevant requirements
in design codes.

4 Methodology

4.1 Random Forests (RF)

Breiman’s RF model was proposed as a powerful learning
algorithm utilizing an assembly of decision trees (Breiman
2001). The RF is applied for both regression and classifi-
cation issues. In the RF algorithm, each tree is grown on a
separate training set that is a bootstrap replicate of the orig-
inal data (Goudarzi and Shahsavani 2012). The suggested
technique is built with a mix of decision trees created from
arbitrary bootstrap samples of the input datasets. In compar-
ison with a single regression tree, RF can reduce the risk
of overfitting while improving prediction performance. The
number of trees (ntree) and the predictor parameters (mtry)

are two essential factors for executing the RF method that
may be used to modify the model. The following are the
major processes for creating an RF model, as seen in Fig. 2:

(1) Considering (ntree) in the forest.
(2) Attributing to each tree a bootstrap sample of size ntree

from the input or training dataset.
(3) Choosing a predictor (mtry) from a training dataset with p

randomly selected predictors for each node’s split point.
(4) Distinguishing the split point and the best parameter from

among predictors and dividing each node into two sub-
nodes.

(5) Anticipate the new data, i.e. the predictions, by summing
the random forest since it is a strong model that can cope
with a high-dimensional database with numerous predic-
tors.

To minimize overfitting in random forest prediction, the
major tuning parameters (ntree;mtry) should be chosen care-
fully. The grid-search approach was used to optimize the RF
values for the parameters ntree and mtry at the same time,
based on the root mean squared error (RMSE) of the out-of-
bag (OOB) data for each parameter setting.

In this research, the values of ntree=40 and mtry=7 was
used to construct the final model.
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Fig. 3 A simple structure of ANFIS with two inputs

4.2 Fuzzy inference system (FIS)

To compare the results of ANFIS, PSOFIS, and GAFIS algo-
rithms based on fuzzy rules, it is necessary to develop a fuzzy
inference system. Fuzzification, fuzzy database, and defuzzi-
fication are the main sections of FIS. To build the Sugeno
FIS structure, grid partitioning (GP) and subtractive cluster-
ing (SC) are used. Since the grid partitioning needs more
computational effort compared to the subtractive clustering
(Ansari et al. 2020), in this research genfis3 generates a FIS
using fuzzy clustering by extracting a set of rules that models
the data behaviour used. The number of clusters is equal to
5 with 100 iterations used for FIS development. The fuzzy
rules in the Takagi and Sugeno fuzzy inference system (Tak-
agi and Sugeno 1985) were used and are shown as follows:

fi = pi x + qi y + ri , x = Ai , y = Bi ,

i = 1, 2, 3, ..., n (8)

4.3 Adaptive neuro-fuzzy inference system (ANFIS)

ANFIS is a multilayer network fuzzy inference system that
provides a connectivity structure of Jang’s Sugeno fuzzy sys-
tem (Jang 1993). ANFIS functions in an equivalent way as
artificial neural networks (ANN) and fuzzy inference systems
(FIS).

To optimize the membership functions parameter, the
approach employs amixof back-propagation and least square
(hybrid) or back-propagation (Chen 2013). Figure 3 depicts
the ANFIS’s overall design, which includes two inputs and
one output. The ANFIS algorithm has five computation lev-
els. Each layer’s job is briefly discussed below.

Layer 1: Assigns a linguistic value to each input, such as
small, medium, big, and so on. Every node is a node function

that adapts to its surroundings.

O1
i = μAi (X) i = 1, 2, 3, O1

i = μBi−3 (Y ) i = 4, 5, 6

(9)

The linguistic value with their member functions (μAi and
μBi−3) is the output of the first layer where X and Y are the
node i model inputs, Ai and Ai−3 are the linguist value.

Layer 2: Amplifies the input nodes. The outcome of this
layer reflects firing strength, which indicates how well the
norms match the inputs.

O2
k = wk = μAi (X) × μBi−3 (Y ) , i = 1, 2, ..., 6,

k = 1, 2, 3 (10)

where O2
k or wk is the firing strength of node k.

Layer 3:Determines eachnode’s normalizedfiring strength.
This strength’s ratio of the kth regulates to the sum of the fir-
ing strength principles.

O3
k = wk = wk

∑
wk

= 1, 2, 3 (11)

where O3
k is the normalized firing strength of node k.

Layer 4: Determines the node function of each node as
well as the effect of each node on the overall outcome.

O4
k = wk fk = wk (pk X + qkY + rk) = 1, 2, 3 (12)

Layer 5: Denotes the total output as a sum of all input nodes.

O5
k = Z =

∑
wk fkk = 1, 2, 3 (13)

The Gaussian membership function is utilized for model
creation in this study, and the hybrid optimization approach
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Table 2 Summary of ANFIS model

Parameter Value

Train epoch 100

Train-Error goal 0

Train-Initial step size 0.01

Train-Step size decrease 0.9

Train-Step size increase 1.1

Table 3 Summary of GA
parameters

Parameter Value

Crossover ratio 0.7

Mutation ratio 0.5

Mutation rate 0.01

Selective pressure 8

Population 100

Maximum iteration 400

is applied for membership function (MF) parameters. The
results of parameters used in the ANFIS model are summa-
rized in Table 2.

4.4 Integrated genetic algorithms with FIS (GAFIS)

Holland et al. (1992) established the search genetic algo-
rithm (GA), which is a probabilistic and population-based
optimization approach. Natural processes including hered-
ity, mutation, crossover, and natural selection influenced the
model’s concept (Rani and Moreira 2010) (Al-Obaidi et al.
2017) (Koza 1994). In each iteration, the optimizer strives
for the best possible results by analysing and choosing the
parent population from the triggered population using the
roulette wheel method and the implementation of evolution-
ary operators, such as mutation and crossover, on the parent
to generate the next generation.

The method begins by creating the starting population at
random. The fitness function is then used tomeasure the indi-
vidual’s fitness. Then, during the selecting step, techniques
such as the Roulette Wheel are used (Goldberg 2006). The
fitness of each population is determined using Eq. 14 in this
technique.

pi = fi
∑n

i=1 fi
(14)

where pi is the probability of individual, fi is the fitness of
individual, and n is the population size.

Crossover and mutation are two processors employed to
produce offspring (Sharafati et al. 2020).

Table 3 provides an overview of the GA parameters that
were employed in this study.

Table 4 Summary of PSO parameters

Parameter Value

Inertia weight (w) 1

Particle acceleration coefficient (c1) 1

Global acceleration coefficient (c2) 2

Population 35

Maximum iteration 800

Minimum value of particle −100

Maximum value of particle 100

4.5 Integrated particle swarm optimization with FIS
(PSOFIS)

Particle swarmoptimization (PSO) is a bio-inspiredpopulation-
based algorithm that generates and uses random variables
driven by the intelligent behaviour of wildlife swarms like
birds or fish (Kennedy and Eberhart 1995).

First, the algorithm distributes the particles randomly
within a given space of solutions. Then, the positions of
the particles are assessed as the global best locations fol-
lowing their own experience as well as of the neighbours.
Particles’ speed is computed since each particle has its veloc-
ity, and it does its own repeated selection for the optimum
location. Eqs. 15 and 16 calculate velocity and new loca-
tions.

Vi,(t+1) = wVi,(t) + c1r1
(
Bpi,(t) − Xi,(t)

)

+c2r2
(
Bgt − Xi,(t)

)
(15)

Xi,(t+1) = Xi,(t+1) + Vi,(t+1) (16)

where w is inertial weight representing the impact of the
velocity vector (Vi ) on the new vector, t is the velocity of
particle i at iteration t , c1 and c2 are acceleration constants,
Bpi , (t) and Bgt are particle i and global best positions,
respectively, and Xi , t is the present position of particle
i .

The optimum location is referred to as the result or fore-
cast of the outcome parameter. Locating a newer location is
influenced by two criteria throughout the finding phase of
every single unit; the first is the particle’s best experience up
to that iteration. The steps are repeated as long as the stopping
criteria are fulfilled.

PSO and GA algorithm was used in this study to optimize
the parameters of the fuzzy inference system. In contrast to
the GA method, the PSO algorithm may function effectively
with a tiny population. The best local and global outcomes
were identified by RMSE for each iteration. Table 4 lists all
of the PSO parameters used in this study.

Figure 4 depicts the approaches utilizing GA and PSO.
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Fig. 4 Steps in PSO and GA
model

5 Dataset for modelling process

The total number of data used in this dataset comprised of
143 experimentally tested RCWs. The dataset was divided
into train and test data sets at random. 65% (95 number) of
the data was chosen for model creation, while the remaining
48 numbers (35%) was chosen to test the performance of the
generated model. As a result, the model’s liability is assessed
on data that is unknown to the model and was not provided
during the training stage.

Table 5 shows the statistical characteristics of the input
variables and the related maximum force (Vu) for the
datasets. Xmin, Xmax, mean, and standard deviation (STD)
are the variables’ minimum, maximum, average, and stan-
dard deviation, respectively.

Lw, hw, and bw represent length, height, and thickness of
the wall, respectively. Ag is the gross area of the wall, hw/lw
is height-to-length ratio, ρx is ratio of reinforcement by lon-
gitudinal reinforcement, ρy is transverse reinforcement ratio,
fc is concrete compressive strength, Fyv is yield strength of
bars at vertical direction of wall, Fyt is strength of horizontal
bars, Nu is applied load during experimental test, and Vu is
shear strength capacity of the RCW.

Table 5 Statistical properties of datasets for shear strength of RC wall

Variable Xmin Xmax STD Average

lw (mm) 450 3200 482.14 1423.32

hw (mm) 495 4928 1196.99 2544.06

bw (mm) 45 305 50.14 123.35

Ag (mm2) 137,250 144,000 19,911.50 153,811.49

hw/lw 0.50 5.83 0.87 1.84

ρx 0 2.30 0.39 0.53

ρy 0 1.17 0.26 0.51

fc (MPa) 13.50 93.60 16.04 39.17

Fyv (MPa) 289 414 146.16 487.66

Fyt (MPa) 428.40 1187 162.65 506.17

Nu (kN) 0 3312 634.01 720.75

Vu(kN) 79.88 2532 588.59 627.85

5.1 Comparative metrics

Some statistical indices, such as root mean square error
(RMSE), mean absolute error (MAE), R2, Willmott index
of agreement (WI), performance index (PI), and discrepancy
ratio (DR), are employed and examined to assess predictive
model adequacy in both training and testing phases:
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R2 =
[∑n

i=1 (oi − o) × (pi − p)
]2

∑n
i=1 (oi − o)2 × ∑n

i=1 (pi − p)2
(17)

RMSE =
√

∑n
1 (oi − pi )2

N
(18)

MAE = 1

n

n∑

i=1

| (oi − pi ) | (19)

W I=1−
∑n

i=1 | (oi−pi ) |2
∑n

i=1 [| (oi − o) |+| (pi−o) |]2 , 0 < W I ≤ 1

(20)

P IA=1

4
×

(
R2
min

R2
A

+W Imin

W IA
+ RMSEA

RMSEmax
+ MAEA

MAEmax

)

(21)

DRi = (pi/oi ) − 1 (22)

where oi and pi show observational and predicted values of
themodel, respectively, ando and p showmeanobservational
and predicted values of the model, A and n denote the model
under review and the total number of data, respectively.

MAE is an index of the difference in uncertainty among
two measurements reflecting the identical phenomena (Will-
mott and Matsuura 2005). Variations of anticipated against
reported and one analysingmethod versus another evaluation
method are examples of oi versus pi .

WIor indexof agreementwasproposedbyWillmott (Will-
mott 1981) as a predefined indicator of model projection
uncertainty that ranges from 0 to 1. The WI is the propor-
tion of mean square error to prospective error. A score of 1
shows a flawless coincidence, whereas a value of 0 implies
no compatibility of any kind.

DR distinguishes the disparity between the reported and
modelled amount of instances to the difference between the
anticipated population and the estimation interval’s limit.

With lower values for MAE, RMSE, and PI, higher values
forR2, andWI, the greatest accuracy can be obtained.Among
other indices, DR shows information about error distribution.
The predicted and observed values are equal when DR = 0,
the predicted values are underestimated when DR<0, and
the predicted values are overestimated when DR>0.

6 Results and discussion

For impactful model assessment and a preliminary exam-
ination of prediction accuracy, graphical techniques and
quantitative indicators are essential. The scattered plot is a
common graphical approach for assessing data distribution
and variation.

The scatterplots for the training and testing datasets for
anticipated and experimentally observed Vu are shown in

Fig. 5. For the projected data of all models, the perfect equity
line of P=O, aswell as the lineswith +20%and−20%errors,
are displayed.

According to the results shown in Fig. 5, the number of
errors with predicted data in the more than +20% and less
than −20% range for ANFIS is 71 (48 data in training and
23 data in testing), 44 for PSOFIS (27 data in training and
17 data in testing), 39 for GAFIS (24 data in training and 15
data in testing), and 37 data points (34 data in training and
15 data in testing) by using RF model.

Table 6 displays the performance of all examined models
based on the RMSE, R2, MAE, and WI criteria, providing
for a more detailed comparison of the approaches. The index
values for the RF, PSOFIS, and GAFIS models are near to
each other in the training set. PSOFIS is ranked top based on
R2, RMSE, and MAE values, with RF, GAFIS, and ANFIS
ranking in next places, respectively.

Based on R2 and RMSE in the testing phase, the RF with
the greatest R2 and lowest RMSE (RMSE = 151.89 and R2

= 0.9351) is superior for testing data. PSOFIS is ranked sec-
ond with (RMSE = 186.20 and R2 = 0.891), and GAFIS
and ANFIS are ranked third and fourth, respectively, with
(RMSE = 188.498 and R2 = 0.889) and (RMSE = 225.7 and
R2 = 0.84). Based on MAE, RF is preferable with an MAE
of 111.52, followed by GAFIS, PSOFIS, and ANFIS with
MAEs of 114.39, 116.62, and 157.83, respectively.

A multi-index parameter (PI) is also utilized to measure
the performance of themodels. The index incorporates statis-
tical indicators such as R2, RMSE,MAE, andWI. According
to equation 1, PI is between 0 and 1, with PI closer to 0
indicating the highest model accuracy. For test data, the per-
formance index for RF is 0.81, putting it in the first place.
PSOFIS and GAFIS, both with PI = 0.87, are ranked second,
while ANFIS, with PI = 1, is ranked last.

Figure 6 depicts a comparison of frequency cumulative
error (FCE) versus absolute relative error for theRF, PSOFIS,
GAFIS, andANFISmodels in test and train data. It is possible
to calculate the percentage of data that is less or more than
the required number. For example, RF and hybrid techniques
(PSOFIS and GAFIS) predicted 50% of data with less than
10% error in train data and 75% of data with less than 30%
error in test data. In the test phase, PSOFIS predicted 7% for
data with more than 60% inaccuracy, whereas GAFIS, RF,
and ANFIS predicted 10, 15, and 22%, respectively.

The RMSE/d coefficient captures low-error based on the
RMSE statistic and high-tendency based on theWI index for
the optimal model performance. Thus, the model with the
lowest RMSE/WI has the best predictive performance of all
the models. Figure 7 shows the values of RMSE/WI ratios
for the examined models, which include the RF, PSOFIS,
GAFIS, and ANFIS. It can be observed that the suggested
RF model has the lowest RMSE/WI value, while hybrid
approaches are ranked second, and ANFIS is the third place.
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Fig. 5 Measured and predicted value of Vu dimensions for test data

Table 6 Statistical metrics in the train and test phase

Dataset Method R2 RMSE MAE WI

Train RF 0.9684 113.88 67.65 0.994

PSOFIS 0.9823 80.19 60.33 0.995

GAFIS 0.9665 110.72 79.06 0.997

ANFIS 0.9150 175.03 69.70 0.987

Test RF 0.9351 151.90 111.53 0.978

PSOFIS 0.8909 186.21 116.63 0.970

GAFIS 0.8895 188.50 114.39 0.971

ANFIS 0.8409 225.27 157.83 0.956

Taylor diagram, which is composed of three statistical
variables, including root, mean squared error, index of deter-
mination, and standard deviation, depicts the performance of
the methods utilized in one basic illustration (Fig. 8).

The RF, PSOFIS, GAFIS, and ANFIS models may be
rated frombest toworst accuracy predictions based on the test

phase findings of the Taylor diagram. PSOFIS, RF, GAFIS,
and ANFIS were rated best to worst during the train phase.

The effect of altering bw and ρx on the proposed models’
conclusions was investigated. The discrepancy ratio (DR),
defined as the ratio of predicted and actual values, was used
to determine the sensitivity of the proposed model to the bw
and ρx parameters. A DR of one implies complete cooper-
ation, whereas numbers greater (or less than zero) indicate
over- (or under-) prediction of the value of Vu. This is sig-
nificant if the errors are negative; it indicates that the model
forecasts the data value less than the true value, which has a
negative performance, and large positive mistakes may raise
the project’s cost.

Figures 9 and 10 illustrate changes in DR values plotted
against bw and ρx for all models during the train and test
phases. Among the models, the RF’s DR errors are within
a tolerable range (−0.25 to 1). PSOFIS, GAFIS and ANFIS
ranges are (−1.5 to 1.5), (−2.5 to 2.2), and (−2 to 2.5),
respectively.As a result, these threemodels frequently under-
predict and over-predict the value of Vu.
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Fig. 6 The cumulative frequency against the absolute relative error for the models

Fig. 7 RMSE/WI ratio for different models in testing phases

For bw parameter, PSOFIS, GAFIS, and ANFIS model
for 40 < bw < 100 exhibited over-prediction and under-
prediction, while DR values for 100 < bw < 300 are close
to zero that demonstrates a goodmatch between the observed
and anticipated Vu.

For ρx parameter, ANFIS model for all range of ρx and
hybridmodels for 0 < ρx < 1, both have over-prediction and
under-prediction. The RF model has consistent behaviour
across all bw and ρx ranges. RF outperforms the othermodels
considered in this study in terms of DR.

6.1 Sensitivity analysis

Sensitivity analysis based on variable importance was con-
ducted to decide the most effective parameters in the pre-
diction of shear strength by the RF model. The significance
of each variable is determined by examining the increase of
prediction error when the OOB data for that variable is ran-
domly permuted while all other variables remain constant
(Goudarzi et al. 2014).

After setting the pre-selected optimal values of ntree and
mtry to decrease the uncertainty, 100 distinct forests were
built, and the mean of significance was determined.

The sensitivity analysis for the variable’s relevance is
shown in Fig. 11. It can be depicted that the wall thick-
ness (bw) and concrete compressive strength ( fc) have the

greatest and least influence on shear strength, respectively.
Rebars strength at the vertical direction (Fyv), the length of
the wall (lw), and the gross area of the wall (Ag) all have quite
the same importance (around 8%). The next rank of varying
importance is the height-to-length ratio (hw/lw), length of the
vertical steel reinforcement, (Tran.web), rebars strength at
the lateral direction (FytT rans.) and Nu. Finally, the height
of the wall (hw) and the compressive strength of the concrete
( fc) have the least impact on shear strength.

7 Discussion and future research
perspectives

The results provided therein provide substantial insight into
the performance and prediction capacities of several mod-
els used to estimate the shear strength of reinforced concrete
walls. This section’s goal is to thoroughly examine and com-
pare the results of the RF, PSOFIS, GAFIS, and ANFIS
models, as well as to investigate the sensitivity of the sug-
gested models to the parameters bw and ρx .

Scatter plots were used to evaluate data distribution and
variation to calculate prediction accuracy. The results indi-
cate that all models forecast shear strength with varying
degrees of accuracy. The perfect equity line (P=O) and lines
representing +20% and −20% errors are provided for refer-
ence.

In the training set, RF, PSOFIS, GAFIS, and ANFIS all
perform well, with PSOFIS having the greatest R2, RMSE,
andMAE values. RF, on the other hand, emerges as the supe-
rior model in the testing phase, with the greatest R2 (0.9351)
and the lowest RMSE (151.90), as well as the lowest MAE
(111.53). GAFIS and ANFIS are ranked second and third in
terms of total prediction accuracy, respectively.

Additionally, the FCE study sheds light on the models’
ability to anticipate various degrees of error properly. RF
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Fig. 8 Taylor diagram for
different models in the train and
test phase
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Fig. 9 DR values of bw for different models in test and train data

and hybrid approaches (PSOFIS and GAFIS) outperform
in the testing phase, successfully predicting a considerable
percentage of data with less than 10 and 30% inaccuracy,
respectively. ANFIS, on the other hand, reveals higher per-
centages of data with larger errors.

Based on the RMSE/WI ratios, in terms of overall accu-
racy, hybrid techniques (PSOFIS and GAFIS) rank second,
while ANFIS trails behind.

The Taylor diagram, which combines numerous statistical
variables, gives a succinct picture of the models’ perfor-
mance. Based on the test phase results, the accuracy forecasts
of RF, PSOFIS, GAFIS, and ANFIS may be ordered from
best to worst, with PSOFIS and RF beating the other models
during the training phase.

The suggested models’ sensitivity to the parameters bw

and ρx is also investigated. The discrepancy ratio (DR) is
used to assess how well the models respond to changes in
these parameters. The range of DR values for RF is con-
sistently smaller (-0.25 to 1), indicating more dependable
predictions. PSOFIS, GAFIS, andANFIS havewider ranges,

indicating a tendency to both underestimate and overestimate
shear strength values.

Regarding the parameter bw, it is observed that PSOFIS,
GAFIS, and ANFIS models exhibit over-prediction and
under-prediction for 40 < bw < 100, while DR values tend
to approach zero for 100 < bw < 300, indicating a better
match between observed and predicted shear strengths.

ANFIS reliably over-predicts and under-predicts the
parameter ρx over the full range, whereas hybrid models
exhibit comparable performance for 0 < ρx < 1. In contrast,
the RF model consistently outperforms the other models in
terms of DR throughout all bw and ρx ranges.

The current study on determining the shear strength of
reinforced concrete walls lays a solid platform for future
research in this area. The data and technique given in this
paper suggest various future research areas. We may provide
light on the relevance of this study and its implications for
future improvements.
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Fig. 10 DR values of ρx for different models in test and train data

– Incorporation of additional input features: To estimate
shear strength, the current study relied largely on a set of
input features. Additional significant elements, such as
concrete mix design parameters, reinforcing details, cur-
ing conditions, and environmental influences, should be
investigated in future studies. By adding these elements,
the prediction capacities of the models may be improved,
resulting in more accurate shear strength calculations.

– Expansion to other types of concrete elements: This study
concentrated on reinforced concrete walls. The created
models, however, may be applied to different types of
concrete parts such as beams, columns, slabs, and joints.
Investigating the models’ applicability to these elements
would help to a more thorough knowledge of shear
strength prediction in diverse structural components.

– Experimental data inclusion: The current investigation
relied on both predicted and experimentally observed
shear strength data. However, future studies may concen-
trate on gathering more experimental data from a broader
range of test specimens. Integrating such experimental

data into models can improve their dependability and
generalizability.

– The current study focused on reinforced concrete walls
with precise material attributes and mixed proportions.
Future research can look into how the established mod-
els can be used in diverse concrete materials, such as
high-strength concrete, self-compacting concrete, and
fibre-reinforced concrete. This would provide a more
comprehensive knowledge of shear strength prediction
across different concrete compositions.

– Validation on real-life structures: To verify their practi-
cal feasibility, the created models may be validated on
real-life reinforced concrete structures. Comparing pro-
jected shear strength values to actual measurements from
existing structures would give useful information into the
accuracy of the models and potential areas for improve-
ment.

– Design guidelines development: Accurate calculation of
shear strength in reinforced concrete buildings is critical
for design and assessment. Future research might focus
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Fig. 11 Sensitivity analysis of parameters

on providing design guidelines or suggestions for profes-
sionals and engineers based on the findings of this study.
These recommendations would make it more straight-
forward to choose appropriate models and give insights
into the aspects that influence shear strength in reinforced
concrete components.

8 Conclusions

While RCWs proved their feasibility as a most effective
lateral resisting system for disturbances such as wind and
seismic loads in civil structures, due to their diverse struc-
tural configurations, different loading situations, and the
complex nonlinear relations between the input variables and
the structural response, predicting their shear capacity is
rather complicated. In this paper, the authors deploy differ-
ent soft computing-basedmodelling approaches (RF,ANFIS,
PSOFIS, and GAFIS) for predicting the shear capacity of
RCWs. Based on this work, the following conclusions can
be drawn:

– Current design codes have substantial uncertainty and do
not completely reflect the effect of major design factors
on shear strength in a logical way. The increased model
variability vs the main design variables computed find-
ings in this study for these approaches explicitly state
this.

– The parametric analysis and different analyticalmeasure-
ments show that the developed innovative hybrid model
addressed the impacts of the main design factors as well
as the highly nonlinear relationship between the input
design requirements and the projected shear capacity ade-
quately.

– The suggested models might be advanced further to
give specifications with higher prediction reliability and
resilience for this realistic albeit complicated design chal-
lenge, therefore improving design precision.

– When compared to other techniques, the RF with the
highest R2 (0.9351), lowest RMSE (151.89), and the best
PI (0.81) was more accurate. It is also possible to con-
clude that RF is superior since its DR values are nearly
equivalent to zero. Additionally, in terms of RMSE/WI,
RF has the lowest value, making it more accurate than
other models.

– Sensitivity analysis reveals that the thickness of the wall
(bw) is the most important element influencing shear
strength.

– PSOFIS andGAFIS (hybridmodels) aremore competent
than ANFIS with the conventional optimization algo-
rithm of enhancing the MF of fuzzy inference systems.

– There is a need to investigate newmetaheuristic optimiza-
tion algorithms thatmay be better adjusted for integration
with the FIS model.

Author Contributions All authors contributed to the study’s conception
and design. GP performed data collection. YS performed the analysis
andmodel’s developments. The first draft of the manuscript was written
and edited by AT and the work was supervised byMH-N and all authors
commented on previous versions of themanuscript. All authors read and
approved the final manuscript.

Funding The authors declare that no funds, grants, or other support
were received during the preparation of this manuscript.

Data Availability The datasets generated during and/or analysed during
the current study are available from the corresponding author upon
reasonable request.

Declarations

Conflict of interests The authors declare that they have no conflict of
interest.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


8746 A. Tabrizikahou et al.

References

Al-Furjan M, Shan L, Shen X, Kolahchi R, Rajak DK (2022)
Combination of FEM-DQM for nonlinear mechanics of porous
GPL-reinforced sandwich nanoplates based on various theo-
ries. Thin-Walled Struct 178:109495. https://doi.org/10.1016/j.
tws.2022.109495

Al-Furjan M, Xu MX, Farrokhian A, Jafari GS, Shen X, Kolahchi R
(2022) On wave propagation in piezoelectric-auxetic honeycomb-
2D-FGM micro-sandwich beams based on modified couple stress
and refined zigzag theories.Waves RandomComplexMedia 22:1–
25. https://doi.org/10.1080/17455030.2022.2030499

Al-Furjan M, Yin C, Shen X, Kolahchi R, Zarei MS, Hajmohammad
M (2022) Energy absorption and vibration of smart auxetic FG
porous curved conical panels resting on the frictional viscoelastic
torsional substrate. Mech Syst Signal Process 178:109269. https://
doi.org/10.1016/j.ymssp.2022.109269

Al-Obaidi M, Li JP, Kara-Zaïtri C, Mujtaba I (2017) Optimisation of
reverse osmosis basedwastewater treatment system for the removal
of chlorophenol using genetic algorithms. Chem Eng J 316:91–
100. https://doi.org/10.1016/j.cej.2016.12.096

American Concrete Institute (2014) Building code requirement for
reinforced concrete (ACI 318–14). MI, USA, American Concrete
Institute

Ansari M, Othman F, El-Shafie A (2020) Optimized fuzzy inference
system to enhance prediction accuracy for influent characteristics
of a sewage treatment plant. Sci Total Environ 722:137878. https://
doi.org/10.1016/j.scitotenv.2020.137878

Armaghani DJ, Hatzigeorgiou GD, Karamani C, Skentou A,
Zoumpoulaki I (2019) Asteris PG Soft computing-based tech-
niques for concrete beams shear strength. Proc Struct Integr
17:924–933. https://doi.org/10.1016/j.prostr.2019.08.123

Asgarpoor M, Gharavi A, Epackachi S (2021) Investigation of various
concrete materials to simulate seismic response of RC struc-
tures. Structures 29:1322–1351. https://doi.org/10.1016/j.istruc.
2020.11.042

Baghi H, Baghi H, Siavashi S (2019) Novel empirical expression to
predict shear strength of reinforced concretewalls basedonparticle
swarm optimization. ACI Struct J 116(5):247–61

Breiman L (2001) Random Forests. Mach Learn 45(1):5–32. https://
doi.org/10.1023/A:1010933404324

Chandra J, Chanthabouala K, Teng S (2018) Truss model for shear
strength of structural concrete walls. ACI Struct J. https://doi.org/
10.14359/51701129

Chen MY (2013) A hybrid anfis model for business failure prediction
utilizing particle swarm optimization and subtractive clustering.
Inf Sci 220:180–195. https://doi.org/10.1016/j.ins.2011.09.013

Code P (2005) Eurocode 8: Design of structures for earthquake
resistance-part 1: general rules, seismic actions and rules for build-
ings. European Committee for Standardization, Brussels

Committee ACI (1995) Building code requirements for structural con-
crete: (ACI 318–95); and commentary (ACI 318R–95). American
Concrete Institute, USA

Darwin D, Dolan CW, Nilson AH (2016) Design of concrete structures,
vol 2. McGraw-Hill Education New York, USA

GoldbergDE (2006) Genetic algorithms. Pearson Education India, Kar-
nataka

Gondia A, Ezzeldin M, El-Dakhakhni W (2020) Mechanics-guided
genetic programming expression for shear-strength prediction of
squat reinforced concrete walls with boundary elements. J Struct
Eng146(11):04020223. https://doi.org/10.1061/(ASCE)ST.1943-
541X.0002734

Goudarzi N, Shahsavani D (2012) Application of a random forests (RF)
method as a new approach for variable selection and modelling
in a QSRR study to predict the relative retention time of some

polybrominated diphenylethers (pbdes). Anal Methods 4:3733–
3738. https://doi.org/10.1039/C2AY25484K

Goudarzi N, Shahsavani D, Emadi-Gandaghi F, Chamjangali MA
(2014) Application of random forests method to predict the reten-
tion indices of some polycyclic aromatic hydrocarbons. J Chro-
matogr A 1333:25–31. https://doi.org/10.1016/j.chroma.2014.01.
048

Gulec CK,Whittaker AS, Stojadinovic B (2007) Shear strength of squat
reinforced concrete walls with flanges and barbell pp 1–8

Hadzima-Nyarko M (2015) Comparison of fundamental periods of
reinforced shear wall dominant building models with empirical
expressions. Tehnicki vjesnik-Technical Gazette 22(3):685–694.
https://doi.org/10.17559/TV-20140228124615
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