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ABSTRACT
In this study, different versions of feedforward neural network (FFNN), Gaussian
process regression (GPR), and decision tree (DT) models were developed to estimate
daily river water temperature using air temperature (Ta), flow discharge (Q), and the
day of year (DOY ) as predictors. The proposed models were assessed using observed
data from eight river stations, andmodelling results were compared with the air2stream
model. Model performances were evaluated using four indicators in this study: the
coefficient of correlation (R), the Willmott index of agreement (d), the root mean
squared error (RMSE), and the mean absolute error (MAE). Results indicated that the
three machine learning models had similar performance when only Ta was used as the
predictor. When the day of year was included as model input, the performances of
the three machine learning models dramatically improved. Including flow discharge
instead of day of year, as an additional predictor, provided a lower gain in model
accuracy, thereby showing the relatively minor role of flow discharge in river water
temperature prediction. However, an increase in the relative importance of flow
discharge was noticed for stations with high altitude catchments (Rhône, Dischmabach
and Cedar) which are influenced by cold water releases from hydropower or snow
melting, suggesting the dependence of the role of flow discharge on the hydrological
characteristics of such rivers. The air2stream model outperformed the three machine
learning models for most of the studied rivers except for the cases where including flow
discharge as a predictor provided the highest benefits. The DTmodel outperformed the
FFNN and GPR models in the calibration phase, however in the validation phase, its
performance slightly decreased. In general, the FFNN model performed slightly better
than GPR model. In summary, the overall modelling results showed that the three
machine learning models performed well for river water temperature modelling.

Subjects Computational Science, Ecohydrology
Keywords River water temperature, Artificial neural network, Flow discharge, Decision tree, Air
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How to cite this article Zhu S, Nyarko EK, Hadzima-Nyarko M, Heddam S, Wu S. 2019. Assessing the performance of a suite of machine
learning models for daily river water temperature prediction. PeerJ 7:e7065 http://doi.org/10.7717/peerj.7065

https://peerj.com
mailto:slzhu@nhri.cn
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.7065
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.7717/peerj.7065


INTRODUCTION
Water temperature is one of the key indicators to determine the overall health of aquatic
ecosystems since it impacts various physical and bio-chemical processes in rivers (Caissie,
2006). Clear examples are the significant impact of stream water temperature on dissolved
oxygen dynamics (Marzadri, Tonina & Bellin, 2013) and algae growth (Goldman &
Carpenter, 1974). Understanding the processes regulating water temperature and how
thermal regimes have changed in the past as well as how they can be modified in the future
is therefore of utmost importance for ecological applications.

This is particularly relevant considering that the increase of air temperature as a result
of climate change, extreme events and anthropogenic pressures concur in impacting river
thermal dynamics (Nelson & Palmer, 2007; Mantua et al., 2010; Cai et al., 2018; Piccolroaz
et al., 2018). Ongoing warming of river water temperature has been observed by several
authors in the past decades as a consequence of global warming (Moatar & Gailhard,
2006; Acuña et al., 2008; Tian & Yang, 2016; Weyhenmeyer et al., 2017), and according to
the Report of European Environment Agency (2012), which stated that water temperature
of some European rivers and lakes has increased from 1 to 3 ◦C during the last century,
this trend is expected in the future as well. Besides the significant role of climatic change,
anthropogenic activities (land use change, damming, thermal releases, etc.) can also
strongly affect river thermal dynamics (Ozaki, Fukushima & Kojiri, 2008; Hester & Doyle,
2011; Casado et al., 2013; Wang et al., 2017; Kędra & Wiejaczka, 2018).

Thermal dynamics in rivers depend on multiple factors (Blaen et al., 2013; Cai et al.,
2018). River temperature follows a diurnal cycle and a seasonal cycle, which are the result
of heat inputs and outputs under specific meteorological (air temperature, humidity, wind
and solar radiation) and hydrological conditions (depth, flow discharge and volume of
groundwater exchange), as schematized in Fig. 1. Despite that many factors affect river
water temperatures, studies have demonstrated that there exists a strong relationship
between water temperature and air temperature (Webb, Clack & Walling, 2003; Hadzima-
Nyarko, Rabi & Šperac, 2014; Toffolon & Piccolroaz, 2015). However, the modelling of their
relationship is not as trivial as it seems, especially when climatic change is to be considered
(Piotrowski et al., 2016).

The modeling and forecasting of water temperature under different spatial and temporal
scales is usually solved by two types of models: deterministic and statistical models.
Deterministic models apply energy budget approaches to predict river water temperature
(Sinokrot & Stefan, 1993; Zhu, Du & Luo, 2018; Du et al., 2018), while statistical models
mainly predict river water temperature using air temperature data (Stefan & Preud’homme,
1993; Mohseni & Stefan, 1999; Webb, Clack & Walling, 2003; Caissie, 2006). Another group
of statistical models are the so called non-parametric models. Artificial Neural Networks
(ANN), which belong to this group, have demonstrated to be a good mathematical tool
to characterize, model and predict a great amount of non-linear processes, and their
applications in river water temperature predictions have been well documented (Sahoo,
Schladow & Reuter, 2009;Hadzima-Nyarko, Rabi & Šperac, 2014;Deweber & Wagner, 2014;
Rabi, Hadzima-Nyarko & Sperac, 2015; Temizyurek & Dadasercelik, 2018; Zhu, Nyarko &
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Figure 1 Schematic view of meteorological parameters and flow processes and their impacts on water
temperatures in a river.

Full-size DOI: 10.7717/peerj.7065/fig-1

Hadzima-Nyarko, 2018; Zhu et al., 2019). The Gaussian process regression (GPR) model
has been widely used in engineering (Sun, Wang & Xu, 2014; Kang et al., 2015; Tan et al.,
2016). Its applications in hydrology are also quite impressive (Rasouli, Hsieh & Cannon,
2012; Grbić, Kurtagić & Slišković, 2013; Sun, Wang & Xu, 2014; Zhu, Nyarko & Hadzima-
Nyarko, 2018). Currently, GPR models have only been applied for river temperature
prediction by Grbić, Kurtagić & Slišković (2013) and Zhu, Nyarko & Hadzima-Nyarko
(2018), and modelling results showed that GPR models can be efficiently used for river
water temperature predictions. Decision Tree (DT)models are supervisedmachine learning
approaches, which are very popular in machine learning (Pradhan, 2013; Rutkowski et al.,
2014; Tsangaratos & Ilia, 2016). They have also been frequently used in hydrology (Balk
& Elder, 2000; Schärer, Page & Beven, 2006; Tehrany, Pradhan & Jebur, 2013; Kumar et al.,
2013), and have been applied only once in water temperature modeling (Zhu, Nyarko
& Hadzima-Nyarko, 2018). Further investigations about these robust approaches in
river water temperature modelling are needed since accurate simulation of river water
temperature plays an important role in water resources management. Previously, ANN,
GPR and DT models were compared in water temperature modeling of the Missouri
River, USA (Zhu, Nyarko & Hadzima-Nyarko, 2018) using only air temperature (Ta) as a
predictor. However, some researches have also tried to model river water temperature by
considering multiple factors, such as river flow discharge (Webb, Clack & Walling, 2003;
Arismendi et al., 2014; Laanaya, St-Hilaire & Gloaguen, 2017), solar radiation (Sahoo,
Schladow & Reuter, 2009), riparian shade (Johnson, Wilby & Toone, 2014), landform
attributes, and forested land cover (Deweber & Wagner, 2014). Air temperature and
river flow discharge are generally the most available variables for modeling temperatures in
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Table 1 Characteristics of river andmeteorological stations.

River Name River station
name/number

Catchment
area (km2)

Calibration
period

Validation
period

Meteorological
station name

Distance from
river station (km)

Drava Botovo 31038 1991–2008 2009–2016 Koprivnica 11.8
Drava Donji Miholjac 37142 1993–2008 2009–2016 Donji Miholjac 1
Mentue Yvonand 105 2002–2009 2010–2012 Mathod 12.7
Rhône Sion 3373 1984–2003 2004–2013 Sion 2.14
Dischmabach Davos 43.3 2004–2009 2010–2012 Davos 4.9
Cedar USGS12119000 477 2001–2012 2013–2017 USW00024233 9.4
Fanno USGS14206950 82 2003–2012 2013–2017 USW00024229 24.1
Irondequoit USGS423205010 368 2005–2013 2014–2017 USW00014768 13.7

rivers, and they have been shown to have the greatest impact on water temperature (Webb,
Clack & Walling, 2003). In this research, ANN, GPR and DT models were developed
for eight river stations characterized by different hydrological conditions using Ta, flow
discharge (Q) and day of the year (DOY ) as predictors. Modelling performances were
assessed by comparing with air2stream, a hybrid statistical-physical based model (Toffolon
& Piccolroaz, 2015; Piccolroaz et al., 2016). The aim of this study is to contribute to water
temperature modelling for river systems.

MATERIALS & METHODS
Study sites and data
Themeasurements of daily water temperature (Tw), flow discharge (Q) and air temperature
(Ta) were obtained from seven rivers in Europe and USA: (i) one river in Croatia, (ii) three
rivers in Switzerland, and (iii) three rivers inUSA. Themain characteristics of the rivers with
the period of records, and the calibration and validation periods are briefly summarized in
Table 1.

The rescaled adjusted partial sums (RAPS) method
In order to detect and quantify trends and fluctuations in time series, the widely used
rescaled adjusted partial sums (RAPS) method (Bonacci, Trninić & Roje-Bonacci, 2008;
Bonacci & Oskoruš, 2010; Basarin et al., 2016) was employed in this study. The RAPS
method can highlight trends, shifts, data clustering, irregular fluctuations and periodicities
in the time series (Bonacci, Trninić & Roje-Bonacci, 2008), and is defined as:

RAPSi=
i∑

n=1

Tn−Tm

ST
(1)

Descriptions of the variables are summarized in Table 2.

Machine learning models
In this study, we compared three machine learning models: feedforward artificial neural
network (FFNN), GPR and DT. Detailed descriptions of these models can be found in Zhu,
Nyarko & Hadzima-Nyarko (2018).
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Table 2 Summary of variables.

Variable Description

Tm The mean value of the time series
ST The standard deviation
Tn The value of a sample, n= 1, 2. . . , N
N The number of values in the time series
Tw Water temperature (◦C)
Ta Air temperature (◦C)
Q Flow discharge (m3/s)
DOY Day of the year (1 to 365 for a regular year or 1 to 366 for a

leap year)
θ The dimensionless flow discharge
t Time
ty The duration of a year
a1-a8 Parameters used in the Air2stream model, which are

estimated through model calibration
Oi The observed water temperatures
Pi The predicted water temperatures
Om The average values of Oi

Pm The average values of Pi

Air2stream
Air2stream is a hybrid model which combines a physically based structure with a
stochastic calibration of parameters (Toffolon & Piccolroaz, 2015; source code available
at https://github.com/spiccolroaz/air2stream). The model has been tested in various river
systems, and generally it performs well. The equation for the air2stream model can be
expressed as (the 8-parameter version):

dTw

dt
=

1
θa4
[a1+a2Ta−a3Tw+θ(a5+a6cos(2π(

t
ty
−a7))−a8Tw)] (2)

Descriptions of the variables can be found in Table 2. In this model version, Tw is
estimated from Ta, Q and a sinusoidal term.

Assuming that the effect of flow discharge can be approximately retained using only
a constant value and by combining the constant terms and those proportional to Tw , a
5-parameter model version can be obtained (Toffolon & Piccolroaz, 2015). In this model
version, Tw is estimated from Ta and a sinusoidal term.

dTw

dt
= a1+a2Ta−a3Tw+a6cos(2π(

t
ty
−a7)) (3)

Disregarding the second term on the right hand of Eq. (2) and assuming that the effect of
the flow discharge can be approximately retained using only a constant value, a 3-parameter
model version can be obtained (Toffolon & Piccolroaz, 2015). In this model version, Tw is
estimated from Ta only.

dTw

dt
= a1+a2Ta−a3Tw (4)
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The detailed information about the model can be found in Toffolon & Piccolroaz (2015)
and Piccolroaz et al. (2016).

Performance indices
Model performances were evaluated using four indicators in this study: the coefficient of
correlation (R), theWillmott index of agreement (d), the root mean squared error (RMSE),
and the mean absolute error (MAE).

R=

 1
N

∑N
i=1(Oi−Om)(Pi−Pm)√

1
N

∑N
i=1(Oi−Om)

2
√

1
N

∑N
i=1(Pi−Pm)

2

 (5)

d = 1−
∑N

i=1(Pi−Oi)
2∑N

i=1(|Pi−Om|+|Oi−Om|)
2

(6)

RMSE =

√√√√ 1
N

N∑
i=1

(Oi−Pi)2 (7)

MAE =
1
N

N∑
i=1

|Oi−Pi| (8)

Descriptions of the variables can be found in Table 2.

Model versions
The models were compared using three different versions: (i) version 1: FFNN1, GPR1
and DT1 using only Ta as input variable, (ii) version 2: FFNN2, GPR2 and DT2 with Ta

and DOY as input variables, and (iii) version 3: FFNN3, GPR3 and DT3 with Ta, Q, and
DOY as input variables. For comparison, the 3-parameter, 5-parameter, and 8-parameter
version air2stream models were used correspondingly.

RESULTS
Seasonal dynamics of Ta, Tw and Q
Detailed statistics for the variables selected (Tw , Q and Ta) can be found in Table 3. Mean
annual Tw for Rhône at Sion and Dischmabach at Davos are smaller compared with Tw for
other river stations since Sion lies at the bottom of a populated Alpine valley, and Davos
is located in a steep glacial valley (Dischma). Mean annual Ta for Dischmabach at Davos
is extremely colder than the other stations. Mentue at Yvonand, Dischmabach at Davos,
Fanno and Irondequoit have smaller annual mean flow discharge (Q< 10.0 m3/s).

Figure 2 shows the temporal variations of annual averaged Tw and Ta for the studied
river stations. It can be seen that the increasing rates of Tw are smaller than that of Ta in
general. Ta displays an increasing trend except for Mentue at Yvonand and Fanno, and the
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Table 3 Basic statistical characteristics of the mean annual water temperature (Tw : ◦C), air tempera-
ture (T a: ◦C), and flow discharge (Q: m3/s) at the eight gauging andmeteorological stations.

River station Item Average Min Max Range

Tw 11.431 10.468 12.293 1.824
Ta 11.391 9.692 12.499 2.808Botovo

Q 478.96 326.52 739.26 412.74
Tw 11.958 11.011 13.132 2.122
Ta 11.782 10.486 12.698 2.212

Donji
Miholjac

Q 515.04 355.23 778.44 423.21
Tw 9.718 9.063 10.253 1.190
Ta 9.919 9.046 10.349 1.302Yvonand

Q 1.397 0.652 2.015 1.363
Tw 7.004 6.563 7.653 1.090
Ta 10.290 8.755 11.379 2.624Sion

Q 103.48 78.69 126.86 48.17
Tw 4.296 4.041 4.564 0.523
Ta 3.786 2.743 4.763 2.020Davos

Q 1.683 1.457 1.979 0.522
Cedar Tw 10.453 9.541 11.814 2.273

Ta 11.593 10.587 12.866 2.279
Q 20.237 13.043 27.450 14.407

Fanno Tw 12.773 11.954 13.925 1.970
Ta 12.602 11.671 13.708 2.037
Q 1.349 0.701 1.896 1.195

Irondequoit Tw 10.851 9.886 11.784 1.897
Ta 9.807 8.425 11.060 2.634
Q 4.218 2.986 5.841 2.855

increasing rates range from 0.0384 to 0.0562 ◦C/year.Tw displays an increasing trend except
for Mentue at Yvonand and Irondequoit, and the increasing rates vary between 0.0052
and 0.0449 ◦C/year. Generally, Tw and Ta display the same varying pattern. However, for
Fanno, Tw has an increasing trend with a decreasing trend of Ta, while for Irondequoit, Tw

has a decreasing trend with an increasing trend of Ta, which indicates that the temporal
variations of Tw may not be explained only by Ta. It is shown in Fig. 3 that the studied river
stations present different characteristics for RAPS values. For Drava at Botovo, increases
of Tw and Ta started in 2006, and during the period 1991–2005, a trend of decreasing
temperature is indicated (Fig. 3A). For Drava at Donji Miholjac, increases of Ta also
started in 2006, however, a trend of decreasing Tw is evident until 2013, which explains
the smaller increasing rate (0.0052 ◦C/year) at this station (Fig. 3B) compared with that of
Botovo (0.0254 ◦C/year). A trend of decreasing Tw and Ta is shown for Mentue at Yvonand
(Fig. 3C), confirming the results in Fig. 3C. For Rhône at Sion, increases of Tw and Ta

started in 2000 and 1992 respectively, and during the periods 1984–1999 and 1984–1991,
a trend of decreasing temperature is noticed (Fig. 3D). A trend of increasing Tw and Ta is
shown for Dischmabach at Davos (Fig. 3E). For Cedar, increases of Tw and Ta started in
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Figure 2 Temporal variations of the mean annual air temperature and water temperature of the eight
river stations. (A) Drava at Botovo air temperature. (B) Drava at Botovo water temperature. (C) Drava
at Donji Miholjac air temperature. (D) Drava at Donji Miholjac water temperature. (E) Mentue at Yvo-
nand air temperature. (F) Mentue at Yvonand water temperature. (G) Rhône at Sion air temperature. (H)
Rhône at Sion water temperature. (I) Dischmabach at Davos air temperature. (J) Dischmabach at Davos
water temperature. (K) Cedar air temperature. (L) Cedar water temperature. (M) Fanno air temperature.
(N) Fanno water temperature. (O) Irondequoit air temperature. (P) Irondequoit water temperature.

Full-size DOI: 10.7717/peerj.7065/fig-2
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Figure 3 Time data series of the rescaled adjusted partial sums (RAPS) for the mean annual air tem-
perature (Ta) and water temperature (Tw) of the eight river stations. (A) Drava at Botovo. (B) Drava at
Donji Miholjac. (C) Mentue at Yvonand. (D) Rhône at Sion. (E) Dischmabach at Davos. (F) Cedar. (G)
Fanno. (H) Irondequoit.
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started in 2013 and 2012 respectively, and during the periods 2001–2012 and 2001–2011,
a trend of decreasing temperature is presented (Fig. 3F). For Fanno and Irondequoit, the
trends of RAPS values are not quite significant (Figs. 3G and 3H).

Figure 4 presents the seasonal dynamics of Tw , Ta and dimensionless flow discharge
(DQ: the ratio of daily flow discharge to annually averaged flow discharge) for the eight
river stations through the climatological year. Results showed that the seasonal variations
of Tw and Ta are almost synchronous for Drava at Botovo and Donji Miholjac, Mentue
at Yvonand, Fanno and Irondequoit, indicating the insignificant role of Q. The damped
responses of Tw to variations in Ta can be found in Rhône at Sion, Dischmabach at Davos
and Cedar, especially for Rhône River at Sion since it is impacted by cold water releases
from high altitude hydropower reservoir, indicating the significant role of Q in these
stations.

Model performances
All the four models (GPR, DT, FFNN and air2strteam) were applied and compared for the
eight stations, and modelling performances were evaluated using RMSE, MAE, R and d
values. The developed models were able to successfully predict Tw using Ta, Q, and DOY
as inputs. Tables 4–11 present the statistical indicators for the eight stations. For the eight
studied stations, the FFNN, GPR andDTmodels performed with relatively similar accuracy
when only Ta was used as predictor, with DT model performing slightly worse than FFNN
and GPR. When DOY was included as model input, modelling performances of the three
FFNN, GPR and DT models dramatically improved in terms of higher R, d and lower
RMSE and MAE values (Tables 4–11). The comparison between the improvement in river
Tw prediction obtained using model version 3 and version 2 indicates that the inclusion
of discharge provided a lower gain than including DOY for all the cases (Tables 4–11).
The relative importance of Q increases for the studied station in the Rhône, Dischmabach
and Cedar Rivers, which suggests that the role of Q on river Tw modelling is more relevant
for high altitude rivers (cold water release from hydropower reservoirs, snow melting and
etc.). However, for lowland hydrological stations impacted by hydropower reservoirs, such
as the Drava River at Botovo, the influence of Q is not that remarkable.

Results at Botovo station are reported in Table 4. Figure 5 illustrates the scatterplot
of measured and calculated values of Tw using the best models with Ta, Q, and DOY as
input variables (version 3). During the validation phase, inspection of statistical metrics
for different models shows that the RMSE and MAE are lowest for the three versions of
the air2strteam model (Table 4), and the best accuracy was obtained using air2strteam3
(RMSE = 0.891 ◦C and MAE = 0.724 ◦C). Averaged RMSE and MAE values for the three
air2strteammodels are 0.986 ◦C and 0.797 ◦C respectively. Compared to the three machine
learning models, air2strteam3 is more accurate, followed by GPR3 (RMSE = 1.302 ◦C and
MAE = 1.042 ◦C) and FFNN3 (RMSE = 1.307 ◦C and MAE = 1.040 ◦C) with similar
accuracy, and finally the DT3 is ranked in the third place with the highest RMSE (1.366 ◦C)
and MAE (1.086 ◦C) values respectively.

Results at Donji Miholjac station are reported in Table 5. Figure 6 illustrates the
scatterplot of measured and calculated values of Tw using the best models with Ta, Q,
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Figure 4 Climatological years for the eight river stations. (A) Drava at Botovo. (B) Drava at Donji Mi-
holjac. (C) Mentue at Yvonand. (D) Rhône at Sion. (E) Dischmabach at Davos. (F) Cedar. (G) Fanno. (H)
Irondequoit.

Full-size DOI: 10.7717/peerj.7065/fig-4

and DOY as input variables. Two important points must be highlighted. Firstly, using
the air2strteam, there is no significant difference between air2strteam1, air2strteam2
and air2strteam3. The R and d values were slightly improved between air2strteam1 and
air2strteam3 (0.3% and 0.1%). In addition, the RMSE andMAEdid not change significantly
between the two models: 8.9% reduction for the RMSE, and 9.27% reduction for the MAE.
Secondly, by comparing the accuracy of the three machine learning models, it is clear that
the FFNN, GPR and DT models worked with slight difference. In addition, DT1 possess
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Table 4 Performances of different model versions in modelling water temperature (Tw) for Botovo station.

Model version Training (Calibration) Validation

R d RMSE (◦C) MAE (◦C) R d RMSE (◦C) MAE (◦C)

FFNN3 0.981 0.990 1.227 0.956 0.977 0.988 1.307 1.040
FFNN2 0.977 0.988 1.345 1.063 0.975 0.987 1.353 1.084
FFNN1 0.926 0.961 2.366 1.838 0.922 0.958 2.350 1.836
GPR3 0.980 0.990 1.236 0.970 0.977 0.988 1.302 1.042
GPR2 0.977 0.988 1.350 1.065 0.975 0.987 1.380 1.104
GPR1 0.926 0.960 2.370 1.841 0.922 0.959 2.366 1.844
DT3 0.989 0.994 0.956 0.729 0.975 0.987 1.366 1.086
DT2 0.984 0.992 1.112 0.859 0.972 0.986 1.445 1.148
DT1 0.929 0.962 2.320 1.802 0.919 0.957 2.424 1.899
air2stream3 0.990 0.995 0.876 0.680 0.991 0.995 0.891 0.724
air2stream2 0.987 0.994 1.002 0.805 0.988 0.993 1.000 0.804
air2stream1 0.986 0.993 1.046 0.838 0.987 0.993 1.066 0.863

Table 5 Performances of different model versions in modelling water temperature (Tw) for Donji Miholjac station.

Model version Training (Calibration) Validation

R d RMSE (◦C) MAE (◦C) R d RMSE (◦C) MAE (◦C)

FFNN3 0.984 0.992 1.290 1.014 0.971 0.986 1.690 1.337
FFNN2 0.979 0.989 1.471 1.172 0.972 0.986 1.677 1.336
FFNN1 0.934 0.965 2.579 2.012 0.928 0.962 2.645 2.063
GPR3 0.982 0.991 1.344 1.053 0.975 0.987 1.592 1.248
GPR2 0.979 0.989 1.481 1.178 0.972 0.985 1.694 1.344
GPR1 0.933 0.965 2.584 2.015 0.928 0.961 2.671 2.090
DT3 0.990 0.995 1.014 0.778 0.972 0.985 1.668 1.314
DT2 0.986 0.993 1.190 0.932 0.969 0.984 1.783 1.422
DT1 0.937 0.967 2.510 1.947 0.925 0.960 2.732 2.134
air2stream3 0.993 0.996 0.876 0.688 0.987 0.992 1.247 0.969
air2stream2 0.991 0.996 0.959 0.771 0.985 0.991 1.310 1.015
air2stream1 0.989 0.995 1.057 0.843 0.984 0.991 1.370 1.068

the lowest accuracy with high RMSE (2.732 ◦C) and MAE (2.134 ◦C), slightly higher than
GPR1 (RMSE = 2.671 ◦C, MAE = 2.090 ◦C), while the FFNN1 was the best model with
lowest RMSE and MAE values.

The results at Mentue station are summarized in Table 6. Figure 7 illustrates the
scatterplot of measured and calculated values of Tw using the best models with Ta, Q, and
DOY as input variables. As can be seen from Table 6, during the validation phase, the
FFNN1, GPR1 and DT1 were practically identical. The difference in the RMSE and MAE
values were small and marginal. The FFNN1 model was slightly more accurate than the
GPR1 and DT1, with MAE of 0.982 ◦C and RMSE of 1.307 ◦C. However, using only Ta as
input variable, air2strteam1 was more accurate than the three machine learning models.
The difference in the performance of these algorithms for the prediction of Tw is discussed
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Table 6 Performances of different model versions in modelling water temperature (Tw) for Mentue station.

Model version Training (Calibration) Validation

R d RMSE (◦C) MAE (◦C) R d RMSE (◦C) MAE (◦C)

FFNN3 0.991 0.995 0.790 0.610 0.988 0.994 0.913 0.685
FFNN2 0.988 0.994 0.901 0.708 0.986 0.993 0.984 0.738
FFNN1 0.978 0.989 1.210 0.927 0.975 0.987 1.307 0.982
GPR3 0.990 0.995 0.808 0.620 0.988 0.994 0.900 0.670
GPR2 0.987 0.994 0.913 0.718 0.986 0.993 0.990 0.750
GPR1 0.977 0.989 1.216 0.930 0.975 0.987 1.311 0.992
DT3 0.994 0.997 0.611 0.463 0.987 0.993 0.947 0.728
DT2 0.993 0.996 0.694 0.539 0.985 0.992 1.034 0.790
DT1 0.985 0.992 0.993 0.758 0.973 0.986 1.364 1.038
air2stream3 0.994 0.997 0.634 0.487 0.992 0.995 0.780 0.553
air2stream2 0.993 0.997 0.666 0.517 0.991 0.995 0.800 0.573
air2stream1 0.991 0.995 0.793 0.610 0.988 0.993 0.933 0.679

Table 7 Performances of different model versions in modelling water temperature (Tw) for Rhne station.

Model version Training (Calibration) Validation

R d RMSE (◦C) MAE (◦C) R d RMSE (◦C) MAE (◦C)

FFNN3 0.966 0.982 0.547 0.422 0.944 0.971 0.763 0.530
FFNN2 0.953 0.975 0.639 0.489 0.936 0.967 0.810 0.589
FFNN1 0.935 0.966 0.744 0.572 0.927 0.962 0.864 0.652
GPR3 0.964 0.982 0.558 0.428 0.948 0.973 0.730 0.507
GPR2 0.952 0.975 0.643 0.492 0.937 0.964 0.813 0.577
GPR1 0.935 0.966 0.746 0.573 0.926 0.957 0.881 0.651
DT3 0.980 0.989 0.427 0.322 0.946 0.970 0.750 0.527
DT2 0.968 0.983 0.526 0.400 0.936 0.964 0.819 0.587
DT1 0.938 0.967 0.733 0.565 0.923 0.956 0.893 0.661
air2stream3 0.961 0.980 0.578 0.447 0.949 0.971 0.736 0.532
air2stream2 0.912 0.952 0.865 0.682 0.892 0.938 1.041 0.822
air2stream1 0.903 0.947 0.902 0.706 0.891 0.938 1.044 0.812

hereafter. The RMSE and MAE values were decreased from 1.307 ◦C to 0.933 ◦C (28.62%),
and from 0.982 ◦C to 0.679 ◦C (30.86%) compared to FFNN1. Compared to the GPR1,
the RMSE and MAE values were decreased from 1.311 ◦C to 0.933 ◦C (28.83%), and from
0.992 ◦C to 0.679 ◦C (31.55%), respectively. Finally, air2strteam1 decreased the RMSE and
the MAE of the DT1 by 31.60% and 34.59%, respectively.

Analysis of model performances at Rhône station (Table 7) showed that, for the models
using only Ta as input variable, the three machine learning models were more accurate
than the air2strteam model and FFNN1 (R= 0.927 and d = 0.962) and GPR1 (R= 0.926
and d = 0.957) performed the best and slightly better than the DT1 model (R= 0.923 and
d = 0.956). According to the RMSE andMAE values, the air2strteam1 was the worst model
with RMSE and MAE values equal to 1.044 ◦C and 0.812 ◦C, respectively. The FFNN1 gave
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Table 8 Performances of different model versions in modelling water temperature (Tw) for Dischmabach station.

Model version Training (Calibration) Validation

R d RMSE (◦C) MAE (◦C) R d RMSE (◦C) MAE (◦C)

FFNN3 0.990 0.995 0.398 0.313 0.987 0.994 0.457 0.366
FFNN2 0.985 0.992 0.504 0.387 0.984 0.992 0.507 0.394
FFNN1 0.951 0.974 0.894 0.677 0.950 0.973 0.896 0.691
GPR3 0.989 0.995 0.418 0.328 0.987 0.993 0.462 0.363
GPR2 0.985 0.992 0.503 0.386 0.984 0.992 0.511 0.398
GPR1 0.950 0.974 0.900 0.685 0.951 0.974 0.887 0.678
DT3 0.994 0.997 0.325 0.255 0.983 0.991 0.536 0.418
DT2 0.991 0.995 0.387 0.293 0.983 0.991 0.527 0.408
DT1 0.966 0.982 0.746 0.553 0.941 0.969 0.972 0.734
air2stream3 0.976 0.988 0.628 0.502 0.976 0.987 0.642 0.526
air2stream2 0.967 0.983 0.740 0.588 0.965 0.982 0.759 0.607
air2stream1 0.946 0.972 0.936 0.744 0.945 0.972 0.941 0.768

Table 9 Performances of different model versions in modelling water temperature (Tw) for Cedar station.

Model version Training (Calibration) Validation

R d RMSE (◦C) MAE (◦C) R d RMSE (◦C) MAE (◦C)

FFNN3 0.985 0.992 0.618 0.488 0.983 0.991 0.768 0.593
FFNN2 0.976 0.988 0.777 0.614 0.979 0.990 0.800 0.623
FFNN1 0.945 0.971 1.168 0.905 0.952 0.975 1.211 0.933
GPR3 0.987 0.994 0.570 0.446 0.985 0.990 0.747 0.592
GPR2 0.976 0.988 0.778 0.614 0.980 0.987 0.867 0.669
GPR1 0.945 0.971 1.169 0.906 0.952 0.971 1.248 0.978
DT3 0.992 0.996 0.448 0.347 0.985 0.989 0.779 0.602
DT2 0.983 0.991 0.657 0.516 0.977 0.986 0.901 0.693
DT1 0.946 0.972 1.156 0.895 0.951 0.972 1.243 0.955
air2stream 3 0.983 0.992 0.649 0.511 0.983 0.991 0.743 0.588
air2stream 2 0.976 0.988 0.780 0.615 0.979 0.987 0.869 0.682
air2stream 1 0.966 0.983 0.922 0.733 0.967 0.981 1.047 0.839

the lowest values (RMSE= 1.044 ◦C andMAE= 0.812 ◦C) and improved the air2strteam1
by a 17.24% and 19.70% reduction in the RMSE and MAE values, respectively. Figure. 8
illustrates the scatterplot of measured and calculated values of Tw using the best models
(version 3) at Rhône station.

A summary of the model performances at Dischmabach station is provided in Table 8
and Fig. 9. It can be observed that GPR1 slightly outperformed FFNN1 and DT1 according
to all measures. A RMSE of 0.887 ◦C was observed in estimated Tw using GPR1, while
the respective values for FFNN1 and DT1 were 0.896 ◦C and 0.972 ◦C, respectively. GPR1
produced the highest R and d between the measured and calculated Tw (R= 0.951 and
d = 0.974), while the air2strteam1 yielded R of 0.945 and d of 0.972, less than the values
obtained using the GRP1. To show the importance of including the DOY and Q as inputs
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Table 10 Performances of different model versions in modelling water temperature (Tw) for Fanno station.

Model version Training (Calibration) Validation

R d RMSE (◦C) MAE (◦C) R d RMSE (◦C) 2cMAE (◦C)

FFNN3 0.982 0.991 0.962 0.751 0.985 0.993 0.948 0.754
FFNN2 0.979 0.989 1.037 0.813 0.985 0.993 0.964 0.768
FFNN1 0.958 0.978 1.458 1.153 0.968 0.984 1.383 1.101
GPR3 0.981 0.990 0.973 0.760 0.986 0.988 1.154 0.931
GPR2 0.978 0.989 1.048 0.820 0.985 0.987 1.213 0.994
GPR1 0.957 0.978 1.462 1.159 0.969 0.979 1.514 1.241
DT3 0.989 0.994 0.755 0.580 0.983 0.986 1.225 0.985
DT2 0.985 0.992 0.871 0.677 0.982 0.986 1.265 1.021
DT1 0.958 0.978 1.446 1.143 0.968 0.979 1.520 1.242
air2stream3 0.988 0.994 0.777 0.607 0.987 0.990 1.091 0.869
air2stream2 0.991 0.996 0.677 0.522 0.991 0.992 0.961 0.794
air2stream1 0.985 0.993 0.867 0.689 0.984 0.989 1.128 0.912

Table 11 Performances of different model versions in modelling water temperature (Tw) for Irondequoit station.

Model version Training (Calibration) Validation

R d RMSE (◦C) MAE (◦C) R d RMSE (◦C) MAE (◦C)

FFNN3 0.989 0.994 1.078 0.840 0.985 0.992 1.242 0.933
FFNN2 0.987 0.994 1.138 0.876 0.986 0.993 1.195 0.926
FFNN1 0.961 0.980 1.983 1.480 0.966 0.982 1.867 1.387
GPR3 0.989 0.994 1.055 0.817 0.984 0.992 1.313 1.004
GPR2 0.988 0.994 1.128 0.868 0.986 0.992 1.260 1.008
GPR1 0.960 0.979 1.998 1.488 0.967 0.981 1.926 1.430
DT3 0.993 0.997 0.825 0.633 0.984 0.991 1.339 1.068
DT2 0.992 0.996 0.931 0.704 0.985 0.992 1.294 1.039
DT1 0.962 0.980 1.949 1.453 0.965 0.980 1.976 1.459
air2stream3 0.994 0.997 0.799 0.618 0.993 0.995 0.990 0.764
air2stream2 0.994 0.997 0.793 0.605 0.993 0.996 0.939 0.702
air2stream1 0.989 0.994 1.071 0.832 0.989 0.994 1.160 0.890

Figure 5 Scatterplot of measured versus calculated water Tw at the Botovo River during the validation
phase. (A) FFNN3. (B) GPR3. (C) DT3. (D) air2stream3.

Full-size DOI: 10.7717/peerj.7065/fig-5
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Figure 6 Scatterplot of measured versus calculated water Tw at the Donji Miholjac River during the
validation phase. (A) FFNN3. (B) GPR3. (C) DT3. (D) air2stream3.

Full-size DOI: 10.7717/peerj.7065/fig-6

Figure 7 Scatterplot of measured versus calculated water Tw at the Mentue River during the validation
phase. (A) FFNN3. (B) GPR3. (C) DT3. (D) air2stream3.

Full-size DOI: 10.7717/peerj.7065/fig-7

Figure 8 Scatterplot of measured versus calculated water Tw at the Rhône River during the validation
phase. (A) FFNN3. (B) GPR3. (C) DT3. (D) air2stream3.

Full-size DOI: 10.7717/peerj.7065/fig-8

to the models, the corresponding performances are illustrated and compared. Comparing
the FFNN2, GPR2 and DT2 models with the DOY as input in addition to the Ta, it can be
concluded that: (i) the three machine learning models provided the same accuracy with
only marginal difference and (ii) the air2strteam2 yielded less accuracy compared to the
FFNN2, GPR2 and DT2 models, with high RMSE and MAE, and low R and d values.
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Figure 9 Scatterplot of measured versus calculated water Tw at the Dischmabach River during the vali-
dation phase.

Full-size DOI: 10.7717/peerj.7065/fig-9

Figure 10 Scatterplot of measured versus calculated water Tw at the Cedar River during the validation
phase. (A) FFNN3. (B) GPR3. (C) DT3. (D) air2stream3.

Full-size DOI: 10.7717/peerj.7065/fig-10

Results obtained using the applied models at Cedar station are illustrated in Table 9.
Figure 10 illustrates the scatterplot of measured and calculated values of Tw using the best
models. Overall, using only the Ta as input, the maximum R and d values of 0.967 and
0.981 respectively during the validation phase were obtained using the air2strteam1 model.
In addition, the RMSE and MAE values of the FFNN1, GRP1 and DT1 models obtained
were 1.211 ◦C and 0.933 ◦C, 1.248 ◦C and 0.978 ◦C, and 1.243 ◦C and 0.955 ◦C, which were
respectively 13.54% and 10.075%, 16.10% and 14.21%, and 15.76% and 12.14%, greater
than the values obtained using the air2strteam1 model. Thus, it was demonstrated that
the air2strteam1 model was more accurate than the machine learning models. With the
inclusion of the DOY as input variable combined with the Ta, the model performances
varied accordingly and were significantly improved. The best accuracy was obtained with
the FFNN2 model that had a significant decrease of the RMSE and MAE compared to the
FFNN1 by 33.94% and 33.23%, respectively. Comparing the overall accuracy of the models
using the version 2, it is clear fromTable 9, that the fourmodels provided the same accuracy
with very marginal difference. Finally, as shown in Table 9, R and d values for the FFNN3,
GPR3, DT3 and air2strteam3 reached up to 0.983, 0.985, 0.989, and 0.983, respectively,
which were relatively higher compared to the values obtained using the versions 1 and 2.
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Figure 11 Scatterplot of measured versus calculated water Tw at the Fanno River during the validation
phase. (A) FFNN3. (B) GPR3. (C) DT3. (D) air2stream3.

Full-size DOI: 10.7717/peerj.7065/fig-11

Results at the Fanno station are reported at Fig. 11 and Table 10. The RMSE andMAE of
the four models for this station were relatively low. It was indicated that the Tw calculated
by air2strteam1 agreed well with themeasured value, with R and d values of 0.984 and 0.989
during the validation phase. Compared to the machine learning models, air2strteam1 was
the best model. Moreover, from the modeling accuracy reported in Table 10, the FFNN1,
GPR1 and DT1 were less accurate than the air2strteam1. Analogously for the version 2 of
models, air2strteam2 was the best model and yielded the highest R and d values (0.991
and 0.992), the lowest RMSE (0.961 ◦C) and MAE (0.794 ◦C), among the four developed
models. On the other hand, except for the R values, the performances of the air2strteam2
was quite similar to FFNN2, with R, d, RMSE and MAE values being 0.985, 0.993, 0.964 ◦C
and 0.768 ◦C, respectively. The DT2 model yielded the poorest accuracy with lowest R
(0.982) and d (0.986) and highest RMSE (1.265 ◦C) and MAE (1.021 ◦C) values.

Table 11 presents the performance metrics for the three machine learning models and
air2strteam for Irondequoit River. Figure 12 illustrates the scatterplot of measured and
calculated values of Tw using the best models. Superiority of the air2strteam for predicting
Tw is evident for all three versions of models. During the validation phase, the superiority
of the air2strteam1 is indicated by higher R (0.984) versus 0.966, 0.967, and 0.965 for
FFNN1, GPR1 and DT1, respectively. This superior performance is confirmed by lower
RMSE and MAE values (1.160 versus 1.867 ◦C, 1.926 ◦C, and 1.976 ◦C), and (0.890 versus
1.459 ◦C, 1.430 ◦C, and 1.387 ◦C) for FFNN1, GPR1 and DT1, respectively. As is shown
in Table 11, air2strteam2 performs best, as indicated by higher R and d, and lower RMSE
and MAE values. It is important to highlight the significant improvement of the models by
the inclusion of the DOY as input variable. By adding the DOY to the model inputs, the
R value was increased from 0.989 to 0.993 for air2strteam2, from 0.965 to 0.985 for DT1,
from 0.967 to 0.986 for GPR2, and 0.966 to 0.986 for FFNN2, respectively (Table 11). The
RMSE was decreased by 35.99%, 34.58%, 34.51% and 19.05%, when using FFNN2, GPR2,
DT2 and air2strteam2, respectively. Similarly, the MAE was decreased by 33.23%, 29.51%,
28.78% and 21.12%, when using FFNN2, GPR2, DT2 and air2strteam2, respectively.
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Figure 12 Scatterplot of measured versus calculated water Tw at the Irondequoit River during the vali-
dation phase. (A) FFNN3. (B) GPR3. (C) DT3. (D) air2stream3.

Full-size DOI: 10.7717/peerj.7065/fig-12

DISCUSSION
For the eight studied stations, the three machine learning models (FFNN1, GPR1 and
DT1) performed comparatively when only Ta was used as predictor. R and d values were
larger than 0.9, indicating good modelling performances. RMSE and MAE ranged from
0.733 to 2.574 ◦C and 0.553 to 2.015 ◦C in the calibration phase, and varied from 0.864 to
2.732 ◦C and 0.651 to 2.314 ◦C in the validation period. The air2stream1model significantly
outperformed the three machine learning models for most of the studied stations, except
for Rhône at Sion and Dischmabach at Davos. Flow discharge (releases of cold water
from high altitude hydropower reservoirs and snow melting from the high altitude areas)
significantly impacted water temperature dynamics for Rhône River at Sion (Fig. 4D)
and Dischmabach River at Davos (Fig. 4E). However, for air2stream1 model with three
parameters (Eq. (4)), the effect of flow discharge was neglected (Toffolon & Piccolroaz,
2015; Piccolroaz et al., 2016), resulting in poor modelling performances.

WhenDOY was included as model input, modelling performances of the three machine
learning models (FFNN2, GPR2 and DT2) dramatically improved in term of higher R, d
and lower RMSE and MAE values (Tables 4–11), which confirmed the results of Heddam
(2016), Heddam & Kisi (2017), and Zhu et al. (2019). In their researches, the inclusion
of the components of the Gregorian calendar significantly improved the performance
of the machine learning models in the case of dissolved oxygen and water temperature
modelling. R and d values varied from 0.952 to 0.993 and 0.975 to 0.996 in the calibration
phase, while for the validation phase, R and d values ranged from 0.936 to 0.986 and
0.964 to 0.993 respectively. RMSE and MAE ranged from 0.387 to 1.481 ◦C and 0.293
to 1.178 ◦C in the calibration phase, and varied from 0.507 to 1.783 ◦C and 0.394 to
1.422 ◦C in the validation phase. Modelling results indicate that the inclusion of DOY is
significant for river water temperature simulation since it provides additional information
on the seasonality of the river thermal dynamics compared to that encapsulated in the
Ta time series. The air2stream2 model performed better than the air2stream1 model,
which indicates that the sinusoidal annual term in Eq. (2) is important for river water
temperature prediction since this annual periodicity can mimic the effect of lateral inflows
and heat fluxes (Toffolon & Piccolroaz, 2015; Piccolroaz et al., 2016). The air2stream2model
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outperformed the three machine learning models in most of the studied stations, except
for Rhône at Sion, Dischmabach at Davos and Cedar River, which were impacted by cold
water releases from high altitude hydropower reservoirs or snow melting.

The comparison between the improvement in river Tw prediction obtained using model
version 3 and version 2 indicated that the inclusion of flow discharge provided a lower
gain than including DOY for all the cases (Tables 4–11). This result indicates that in the
proposed models Q plays a minor role, and the addition of DOY significantly contributes
to better capture the seasonal pattern of river thermal dynamics. The relative importance of
Q increases for the studied station in the Rhône, Dischmabach and Cedar rivers. The results
also suggested that the role of Q on Tw modelling is more relevant for high altitude rivers
impacted by cold water release from hydropower reservoirs or snow melting. However, for
lowland hydrological stations impacted by hydropower reservoirs, such as the Drava River
at Botovo, the influence of Q is not that remarkable. The air2stream3 model outperformed
the three machine learning models in most of the studied stations, except for Rhône at
Sion, Dischmabach at Davos and Cedar River.

For all the three model versions, DT model outperformed FFNN and GPR models in
the calibration phase, while for the validation phase, its performance slightly decreased.
Generally, FFNN model performed slightly better than GPR model, while the overall
difference can be neglected. The RMSE values for the eight studied stations range from
0.956 to 1.366 ◦C, 1.014 to 1.69 ◦C, 0.611 to 0.947 ◦C, 0.427 to 0.763 ◦C, 0.325 to 0.536 ◦C,
0.448 to 0.779 ◦C, 0.755 to 1.225 ◦C, and 0.825 to 1.339 ◦C respectively for all the version
3 machine learning models, which are reasonable compared with Jackson et al. (2018)
(1.57 ◦C) and Sohrabi et al. (2017) (1.25 ◦C), and far better than that of Temizyurek and
Dadaser-Celik (2018) (2.10–2.64 ◦C). Overall, the three machine learning models (FFNN3,
GPR3 and DT3) performed well for river water temperature modelling.

CONCLUSIONS
In this study, different versions of FFNN, GPR and DT models were developed to simulate
daily river water temperatures using Ta, Q, and DOY as predictors. The models were
assessed in various river systems, and modelling results were compared with air2stream
model. For the eight studied river stations, the FFNN, GPR and DT models performed
similarly when only Ta was used as predictor. WhenDOY was included as input, modelling
performances of the FFNN, GPR and DT models dramatically improved in term of higher
R, d and lower RMSE and MAE values. The inclusion of Q provided a lower gain than
including DOY for all the cases, which indicates that in the proposed models Q plays a
minor role. However, the relative importance of Q increases for the studied station in the
Rhône River, Dischmabach River and Cedar River, which suggested that the role of flow
discharge on river water temperature modelling is more relevant for high altitude rivers
impacted by cold water releases from hydropower or snow melting. The air2stream model
outperformed the three machine learning models in most of the studied rivers except
for the Rhône River, Dischmabach River and Cedar River. For the eight studied river
stations, RMSE values of MLPNN3, GPR3 and DT3 models ranged from 0.398 to 1.690 ◦C,
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0.418 to 1.592 ◦C, and 0.325 to 1.668 ◦C respectively. For the Mentue River, Rhône River,
Dischmabach River, and Cedar River, the RMSE values are lower than 1.0 ◦C. Overall,
FFNN, GPR and DT models performed well for river water temperature modelling.
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