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Design of a machine learning model 
for the precise manufacturing 
of green cementitious composites 
modified with waste granite 
powder
Sławomir Czarnecki1*, Marijana Hadzima‑Nyarko2, Adrian Chajec1 & Łukasz Sadowski1

In this study, a machine learning model for the precise manufacturing of green cementitious 
composites modified with granite powder sourced from quarry waste was designed. For this purpose, 
decision tree, random forest and AdaBoost ensemble models were used and compared. A database 
was created containing 216 sets of data based on an experimental study. The database consists 
of parameters such as the percentage of cement substituted with granite powder, time of testing 
and curing conditions. It was shown that this method for designing green cementitious composite 
mixes, in terms of predicting compressive strength using ensemble models and only three input 
parameters, can be more accurate and much more precise than the conventional approach. Moreover, 
to the best of the authors’ knowledge, artificial intelligence has been one of the most effective and 
precise methods used in the design and manufacturing industry in recent decades. The simplicity 
of this method makes it more suitable for construction practice due to the ease of evaluating the 
input variables. As the push towards decreasing carbon emissions increases, a method for designing 
green cementitious composites without producing waste that is more precise than traditional tests 
performed in a laboratory is essential.

The application of admixtures in the manufacturing of so-called ’green cementitious composites’ has recently 
played a more important role in sustainable development. This is mainly due to the recent worldwide trend 
towards reducing the amount of carbon dioxide  (CO2) generated during the production of Portland  cement1,2. 
These composites are “green” because of the incorporation waste admixtures and as a partial replacement for 
cement. Such admixtures mainly include fly ash, ground granulated blast furnace slag (GGBFS), and granite 
 powder3–5. An additional reason for their use is the fact that these materials are waste from various industrial 
 processes6.

The use of granite powder as an admixture in mortars is mainly of interest because this material is difficult to 
recycle. Usually, this waste mineral is stored but has a decomposition time greater than 1,000,000 years. Granite 
is extremely hazardous in powder form because the powder particles are often suspended in the air and enter soil 
and water. Thus, mineral waste powders have the potential to cause respiratory failure in humans and animals. 
Furthermore, its disposal leads to water pollution and plant pollination (which is detrimental to the environ-
ment). The incorporation of waste mineral powders into solid material (such as mortar or concrete) reduces 
its hazardous effects, mitigating their  harmfulness7. Recently, an increasing number of studies have focused on 
the behaviour of cementitious composites containing granite powder. This research is particularly related to 
the mechanical properties of hardened cementitious composites (e.g., compressive  strength8, flexural  strength9, 
tensile splitting  strength10).

The conventional methodology for identifying the compressive strength of cementitious composites requires 
destructive laboratory tests. Unfortunately, these tests are very costly and time-consuming. For example, in 
the European Union, it costs no less than 100 euros to test one series of composites. Because these tests are 

OPEN

1Department of Materials Engineering and Construction Processes, Wroclaw University of Science and Technology, 
Wybrzeze Wyspiańskiego 27, 50-370 Wrocław, Poland. 2Faculty of Civil Engineering and Architecture Osijek, Josip 
Juraj Strossmayer University of Osijek, Vladimira Preloga 3, 31000 Osijek, Croatia. *email: slawomir.czarnecki@
pwr.edu.pl

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-17670-6&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2022) 12:13242  | https://doi.org/10.1038/s41598-022-17670-6

www.nature.com/scientificreports/

destructive, they are performed on a limited number of samples, which may lead to imprecise results. This makes 
the conventional methodology ineffective and increases the carbon footprint of the process of obtaining mechani-
cal properties. Furthermore, because with traditional  methods11, the ability to evaluate the compressive strength 
of mortar containing a large amount (above 15% of the cement mass) of granite powder as a substitute for cement 
is lacking, a more precise method is needed. To the best of the authors’ knowledge, artificial intelligence has been 
one of the most effective and precise methods used in the design and manufacturing industry in recent decades.

To overcome the disadvantages mentioned above, modelling methods based on machine learning algo-
rithms are used more frequently to address various engineering problems (e.g., the prediction of the compres-
sive  strength12, adhesion between cementitious composite  layers13, soil compression  coefficient14, soil erosion 
 susceptibility15, and axial compression  capacity16 and the design of concrete  mixtures17). Such modelling, using 
machine learning, consists of 5 steps: problem definition, data collection, modelling, evaluation and result 
 analysis18.

Of these techniques, artificial neural networks (ANNs) are especially popular. In previous research, ANNs 
have been very useful for predicting the compressive strength of cementitious  composites19–21 and have been 
used to determine the compressive strength of lightweight cementitious  composites22 and cementitious  bricks23, 
as well as the compressive strength of self-compacting  composites24. However, such research is still needed for 
green cementitious composites containing different admixtures. First, the behaviour of such composites under 
various loading conditions should be determined. In particular, these admixtures affect the compressive strength 
of composites. Additionally, because creating machine learning-based models for compressive strength predic-
tion is a nondestructive way of identifying these properties, it would reduce the associated costs and time for 
companies producing concrete. Daily, tons of concrete are wasted because of compressive strength tests due to 
the requirements of the standards imposed and the obligation to test all parts of a hardened concrete mixture, 
in some cases once a  day25.

However, more recently, studies have been undertaken to use ensemble models due to their very high preci-
sion and good performance in predicting the compressive strength of concrete. This is because a random forest 
rejects linear assumptions and is able to learn the importance of inconsistent variables in  datasets26. Notably, most 
ensemble models are characterized by higher overfitting resistance. Therefore, various ensemble models have 
been used, e.g., for the prediction of the compressive strength of cementitious  composites27. These models have 
also been used successfully to predict the compressive strength of cementitious composites containing recycled 
 rubber28, blast furnace slag, silica  fume29 and fly  ash30.

However, ensemble models for predicting the compressive strength of cementitious composites (cement 
paste, mortar, or concrete) where the cement is replaced by the waste granite powder are still lacking. This is a 
research gap that should be filled and is a goal of this article.

Materials and methods
Mixing proportions. In this study, ordinary Portland cement (OPC) and granite powder (GP) were used 
as binders. The physical and chemical properties of the cement and granite powder are described in Table 1 and 
Fig. 1, respectively. The particle size distributions of ordinary Portland cement and granite powder were investi-
gated by means of the sieve size development method. Both materials were placed on a sieve assembly and then 
shaken for 180 s. Then, the residue on each sieve was weighed, and a screening curve was created. The particle 
size distributions of ordinary Portland cement and granite powder are compared in Fig. 1. River sand with a 
fineness modulus of 2.40, a specific gravity of 2.45, and a water absorption of 0.82 was used as the fine aggregate. 
In the present investigation, potable water was used for mixing and curing.

In this research, 4 series of cement mortars were prepared, the compositions of which differed in the amount 
of cement replaced with granite powder (GP). Details of the proportions of the mortar mix by weight used in 
this study are presented in Table 2.

Experimental program. Figure 2 presents the research procedure. First, the dry ingredients were placed 
in a mixer and mixed for 30 s. Then, water was added, and the mixture was mixed for 90 s. Next, the mortar 
remnants on the walls of the mixer were manually peeled off, and the mixture was mixed for 90 s.

After mixing, the consistency of the mortar was investigated using the mortar slump subsidence  method31, 
and then the mortar was placed in prepared forms. Twenty-four hours after moulding, the sample curing process 
started. The samples were divided into 3 groups and then stored according to the conditions described in Table 3.

After 7, 28, and 90 days of curing, the samples were investigated by a compressive strength test. Compressive 
strength tests were performed using a compression strength test machine (Fig. 2) according  to32.

Table 1.  Comparison of the physical properties of the cement and granite powder. *For cementitious 
composites with 30% of the cement replaced with granite powder.

Characteristic Units Ordinary Portland Cement CEM I 42.5 R Granite powder

Blaine’s fineness m2/kg 365 395

Specific gravity – 3.15 3.20

Initial setting time minutes 105 220*

Final setting time minutes 180 350*
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Figure 1.  Comparison of the chemical properties and particle size distributions of ordinary Portland cement 
and granite powder.

Table 2.  Mixture proportions used in this study.

No Cement (–) Granite powder (–) Fine aggregate (–) Water/binder ratio Water/cement ratio Novikov slump (mm)

1 1.00 0

3.0 0.5

0.50 110

2 0.90 0.10 0.56 108

3 0.80 0.20 0.63 106

4 0.70 0.30 0.71 103

Figure 2.  Production process of cement mortars with granite powder.
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Results
Statistical analyses of the obtained results. In the experimental program, only three variables were 
varied: age (7, 28 and 90 days), curing conditions (air cured, humid-air cured, and water cured) and water to 
cement ratio (0.5, 0.56, 0.63, and 0.71) as an expression of the decreasing amount of cement and increasing 
amount of granite powder. Thus, because the compression tests were performed on 2 halves after the tensile 
strength tests, the overall number of investigated samples was 216. In Fig.  3, the results of the compressive 
strength are presented with respect to age, curing conditions, and water-to-cement ratio.

According to Fig. 3, there is only a correlation between age and compressive strength. This is supported by the 
value of the coefficient of determination, which is equal to R2 = 0.807. For the other variables and the compressive 
strength, there is a lack of correlation, as evidenced by the very low values of the coefficient of determination, 
which are less than R2 = 0.4. As expected, the highest compressive strength values are obtained for the samples 
that were kept in water; their curing conditions are denoted as CC1. The older the samples are, the higher the 
value of the compressive strength obtained. However, the addition of the granite powder is unable to obtain 
compressive strength values equal to the 60 MPa of the reference sample, but due to the filling effect of the 
powder, the minimum values of compressive strength increase with increasing granite powder content (from 
approximately 20 MPa to 28 MPa for 10% replacement of cement by granite powder and to 25 MPa for 20% 
replacement of cement by granite powder). This effect is very promising for the design of low-quality cementi-
tious composite mixtures.

Table 3.  Curing conditions for cementitious mortar samples.

Description (–) Type of curing (–) Humidity (%) Temperature (°C)

CC1 Air cured 20–55 16–30

CC2 Humid-air cured 55–90 23 ± 1

CC3 Water cured 100 23 ± 1

Figure 3.  The relations between the compressive strength and (a) age, (b) curing conditions and (c) granite 
powder amount.
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Modelling the compressive strength by means of ensemble models. As mentioned above, there 
are no strong correlation between the variables that are components of the mixture proportions, curing condi-
tions, or testing age and compressive strength. Thus, it is reasonable to perform numerical analyses using more 
sophisticated techniques, e.g., ensemble models.

These models based on decision trees, which are considered supervised machine learning algorithms, are 
able to solve both regression and classification problems. The structure of such a decision tree consists of nodes 
in which a binary decision is made, and this division continues until the moment the algorithm is not able to 
separate the data in the  node33. This node, called the leaf of the tree, provides the solution of the problem. The 
advantage of using this type of algorithm is the simplicity of the model obtained. However, in contrast, this is 
also a disadvantage because it might lead to algorithm overfitting. Decision trees are accurate and perform well 
on datasets with large variations in variables and when the number of records is not  large34.

This problem might be solved by using a random forest algorithm, which uses many decision trees to obtain 
the solution to one problem. Each tree in the forest is built by a random training set, and at each node, division 
is carried out based on input variables that are randomly  selected35.

However, in some cases, the performance of the random forest algorithm is not accurate, and efforts to 
improve it should be made. For this purpose, of the various ensemble learning algorithms, the adaptive boost-
ing (AdaBoost) algorithm is the most typical and widely  used36. This algorithm is effective because the next tree 
in the algorithm is modified based on the precision of the previous tree, strengthening the learning ability. The 
structural scheme of a decision tree, where the input variables are denoted Xi and the output variable is denoted 
Yi, is presented in Fig. 4 combined with the random forest and AdaBoost algorithm schemes.

The level of precision of the models is evaluated using a few parameters, which, according  to37, can include 
the linear correlation coefficient (R), mean absolute error (MAE), root mean squared error (RMSE), and mean 
average percentage error (MAPE). The calculations of these parameters are performed as follows:

where y, measured value from the experimental test; ŷ , predicted value from the analyses; y , mean value; n, 
number of data samples in the process.

Note that an R value closer to 1 corresponds to a better prediction from the algorithm. In turn, lower val-
ues of MAE and RMSE and MAPE mean that the algorithm predicts the output variables better than the other 
algorithms. Additionally, to avoid overfitting, tenfold cross-validation is performed according  to38, as presented 
in Fig. 5.

Based on the division of the dataset presented in Fig. 5, numerical analysis is performed. The performance of 
each fold is evaluated and presented in Fig. 6 in terms of the values of R, MAE, RMSE and MAPE. Moreover, the 
relations between the experimentally measured compressive strength value and those obtained using machine 
learning algorithms are presented in Fig. 7, combined with the error distribution in Fig. 8.

According to Figs. 6, 7 and 8, all of the investigated ensemble models are significantly precise in terms of 
predicting the compressive strength of mortar containing waste granite. This is evidenced by the very high values 
obtained for the linear correlation of coefficient R, which are close to 1.0. The accuracy of the performance is also 
supported by the very low errors values, which, as shown in Fig. 7, are less than 4%. Additionally, according to 
Fig. 8, the proposed models accurately predict the compressive strength values and only fail to properly predict 
the strength of a few samples (the percentage error is higher than 10%).

The proposed model is also accurate compared to other machine learning algorithms used for the purpose 
of predicting the compressive strength of green cementitious composites containing different admixtures. Some 
selected works are presented in Table 4 in addition to the results obtained by the models presented in this work.

Analysis of the results in Table 4 shows that the levels of precision for the compressive strength of green 
cementitious composites using machine learning algorithms are very high. Additionally, in this work, a very 
precise model for predicting the compressive strength of green cementitious composite containing different 
admixtures, in comparison to those investigated previously, is constructed.

Conclusions
In this article, a comparison of three ensemble models for predicting the compressive strength of mortars contain-
ing waste granite powder, taking into account the age of the samples and the curing conditions, was presented. 
For this purpose, a database was built based on an experimental program. This database was formulated on the 
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Figure 4.  Schemes of ensemble models: (a) decision tree, (b) random forest and (c) AdaBoost.
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basis of tests performed on standardized samples prepared and tested at different ages and cured under different 
conditions. Based on the presented research, the following conclusions can be drawn:

• The article shows that it is possible to predict the compressive strength of mortars with granite powder addi-
tions based on just three parameters: the testing age, the water to cement ratio and the curing conditions. 
Therefore, the presented method can be seen to be simple and reliable in use.

• The usefulness of this method was proven by the very high values of the linear correlation coefficient R, which 
equal 0.989 for the decision tree, 0.989 for the random forest and 0.988 for AdaBoost.

• All models were characterized by low error values, which in the case of MAE were less than 1.270 MPa, in 
the case of RMSE were less than 2.633 MPa, and in the case of MAPE were less than 3.35%.

Figure 5.  The division of the cross-validation folds.

Figure 6.  The performance of the analyses evaluated by (a) the linear coefficient of correlation, (b) mean 
average error, (c) root mean square error and (d) mean average percentage error.
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The authors emphasize that the proposed method has limitations, which include the time of the test and 
the water-to-cement ratio. However, the only curing conditions that were not taken into account in this paper 
were characterized by high temperature; thus, these models can be used in almost any conditions under which 
samples are cured. From a practical point of view, it might be beneficial to verify whether this model is accurate 
for samples prepared by other researchers. Moreover, whether the model can be used for similar cementitious 
composite mixtures but with other waste mineral powders should be verified. Moreover, it might be beneficial 
to model other properties of green cementitious composites such as subsurface tensile strength, creep strain, or 
shrinkage. Moreover, due to the ecologically inspired push towards using waste materials in cementitious com-
posites, constantly updating the model to make it suitable for newly designed cementitious composite mixtures 
would be reasonable.

Figure 7.  The relations between the measured compressive strength and predicted compressive strength by (a) 
decision tree, (b) random forest and (c) AdaBoost algorithms.
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Figure 8.  Prediction error distribution: (a) values and (b) percentage.

Table 4.  Comparison of algorithms used for compressive strength prediction of green cementitious 
composites containing different admixtures.

References Type of admixture

Level of precision

Machine learning model
Linear coefficient of 
correlation R

Root mean squared error 
RMSE [MPa]

Han et al.3 Ground granulated blast 
furnace slag 0.984 2.47 PSO-BP

Ahmad et al.12 Fly ash 0.954 4.03 DT-Bagging

Behnood et al.20 Silica fume 0.988 3.93 HANNMOGW

Kandiri et al.21 Ground granulated blast 
furnace slag 0.980 2.12 MOANN

This work Granite powder

0.989 2.54 DT

0.989 2.50 RF

0.988 2.63 AdaBoost
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Data availability
All data generated or analysed during this study are included in this published article and its supplementary 
information files.
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