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Abstract: The efficacy of the application of traffic models depends on a successful process of model
calibration. Microsimulation models have a significant number of input parameters that can be
optimized in the calibration process. This paper presents the optimization of input parameters
that are difficult to measure or unmeasurable in real traffic conditions and includes parameters of
the driver’s behavior and parameters of Wiedemann’s psychophysical car-following model. Using
neural networks, models were generated for predicting travel time and queue parameters and were
used in the model calibration procedure. This paper presents the results of a comparison of five
different applications of neural networks in calibrating the microsimulation model. The VISSIM
microsimulation traffic model was selected for calibration and field measurements were carried out
on two roundabouts in a local urban transport network. The applicability of neural networks in the
process of calibrating the microsimulation models was confirmed by comparison of the modelled and
measured data of traffic indicators in real traffic conditions. Methods of calibration were validated
with two sets of new measured data at the same intersection where the calibration of the model was
carried out. The third validation was made at the intersection in a different location. The selection
of the optimal calibration methodology is based on the model accuracy between the simulated and
measured data of traveling time, as well as queue parameters. The microsimulation model provides
access to the raw data of observed traffic parameters for each vehicle in the simulation. The dataset
of the calibrated model simulation results of all travel times of the selected traffic flow was compared
with the dataset of the measured field data to determine whether the data are statistically significantly
different or not.

Keywords: urban traffic; microsimulation; VISSIM; calibration; neural networks; roundabouts; validation

1. Introduction

The nature of the traffic systems is stochastic and depends on a large number of param-
eters. Experimenting on such real traffic systems is time-consuming and disadvantageous
for the traffic safety criterion, and for this reason, in the middle of the last century, the devel-
opment of traffic models that served for different traffic analyses began. Depending on the
time and spatial extent of the model, macrosimulation, mesoscopic and microsimulation
models are used.

In recent years, a significant number of traffic models have been developed, which are
suitable for different types of traffic analysis [1–5]. To select the appropriate model, it is
necessary to analyze the context of modelling, temporal and spatial extent, availability and
quality of the input data, and the possibility of evaluating the reality of modelling results.

To match the real traffic conditions, these models should envelope numerous parame-
ters that are locally conditioned, such as different driver behavior, different environments,
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infrastructure and predominant vehicle types. These input parameters are included in the
simulation models, but their value needs to be adapted to local conditions. Having this
in mind, there is no universally applicable traffic model for any type of sensible traffic
analysis. Some of the input parameters can be measured in actual traffic conditions and
some are determined by the optimization process. Therefore, a calibration procedure is
required to determine the values of the input parameters of the simulation models.

Common methodology for the calibration of microsimulation models has not yet
been adopted, but various approaches exist [4–10]. An overview of the different ap-
proaches to the calibration of traffic models [11–13] based on a different selection of input
parameters [6,7], different optimization of dynamic traffic distribution [1] and daily mobil-
ity [14] is available in the literature.

Since the research of the potentially optimal combinations of input parameter values
of a microsimulation model is time-consuming, the idea of computer program calibration
seems to be very logical. Calibration methods based on the neural network prediction have
shown that a neural network is applicable in the process of calibration of the microsimula-
tion traffic model [15].

The VISSIM microsimulation software was used to evaluate the implementation of
neural networks in the optimization process of input model parameters, while two existing
urban single-lane roundabouts served as the research basis.

Microsimulation models have a large number of input parameters that can be opti-
mized in the calibration process. Some of the input parameters of the model are measurable
in real traffic conditions, such as traffic load, traffic distribution, traffic structure (percentage
of personal vehicles, buses, freight and heavy goods vehicles, number of pedestrians at
crosswalks, etc.). In this paper, the measurable input parameters are entered into VISSIM
as they were measured in real traffic conditions in order to achieve the highest possible
accuracy of the model. The subjects of optimization are the hard-to-measure and unmea-
surable model input parameters that are dominantly related to the parameters of driver’s
behavior and parameters of Wiedemann’s car-following model. The parameters that were
the subject of optimization are explained in detail in Section 3.

The aim of this research is to make a comparison and evaluation of different neural
network application methods in the calibration of the microsimulation model. The neural
network models were used to predict the results of the simulation for the observed output
traffic parameters. The neural network models applied in the calibration procedure, as
well as the accuracy of the prediction results, are presented in Section 3, where the applied
methodology is described. The MATLAB computer code automatically created different
sets of input parameters of the microsimulation model within the specified ranges and
with a given set of steps. The five calibration methods differ in the number of neural
networks that are used to predict the results of simulations for various traffic indicators,
such as traveling time and/or queuing parameters. By connecting the predict-function of
the neural network and the MATLAB code, the calibration process runs automatically.

In this research, model accuracy (Ac) was used to evaluate the performance of different
calibration methods. Validation of different calibration methods was carried out iteratively
in three steps and the calibration method that gave the best results in all validation steps was
selected. Two validations were made on datasets collected at the same intersection where
the model calibration was made, but in different traffic conditions. The third validation was
carried out at another intersection, with the aim of checking whether the calibrated model
is applicable to different intersections of the same type of the observed local network, or
whether the calibrated model is applicable only to the intersection where it was calibrated.

The last evaluation was made on the raw data database of individual travel times of
each vehicle of the observed traffic stream for data obtained by simulation with a calibrated
model and data measured in the field. Non-parametric statistical tests were used to analyze
whether two sets of data were statistically significantly different.

In the Section 2, a brief overview of the literature is presented. The Section 3 pro-
vides a description of the methodology. Five different calibration methods using neural
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networks were analyzed. In the Section 4, the results of the calibration and validation of
the microsimulation traffic model with aggregate and disaggregate data are shown. The
following two Sections are a discussion of the results and concluding considerations of the
different methods of applying neural networks in microsimulation model calibration.

2. Literature Review

Calibration procedure is focused on optimizing values of input model parameters.
Microsimulation models have a lot of input parameters that can be introduced into the
calibration procedure, and an important step in the optimization process is to select those
input parameters that have a significant impact on the result in the observed optimization
problem. Research activity in the field of microsimulation model calibration is significant,
and in this brief overview of the existing literature, only part of the research is discussed.

A framework for the calibration of the microscopic traffic simulation model, using
aggregate data was presented in [12]. The framework takes into account the interactions
between the model parameters and the O–D flows.

Park and Qi, 2005 [6] showed the results of the development of a calibration procedure
for the microsimulation traffic model. The validity of the proposed procedure is shown in
the case study of a signalized intersection in Virginia.

Kim, 2006 [7] developed a methodology to calibrate the O–D matrix jointly with model
behavior parameters using a bi-level calibration framework.

Cunto and Saccomanno, 2008 [13] presented a systematic procedure for calibrating
and validating a microscopic model of safety performance. The procedure effectively
estimated the model input parameters that closely matched safety performance measures
in the observed validation data.

Llorca et al., 2015 [3] presented the development and calibration of a passing maneuver
model in microsimulation software. The result of the study is a modified car-following
and passing model implemented in microsimulation model software, which can estimate
adequately the operation of single passing zones.

Paza et al.’s 2015 study [8] proposed a memetic algorithm for the calibration of a
microscopic traffic flow simulation model. The memetic algorithm included a combination
of genetic and simulated annealing algorithms. The calibration results showed that all
parameters after the calibration were within reasonable boundaries.

Chiappone et al. [9] showed the results obtained by applying a genetic algorithm
in the microsimulation traffic model calibration process. The calibration was formulated
as an optimization problem in which the objective function was defined to minimize the
differences of the simulated measurements from those observed in the speed–density
diagram. The research results indicated that the procedure gave a good fit, both in the
calibration and validation steps.

Yu and Wei, 2017 [10] presented metaheuristic algorithms to calibrate a microscopic
traffic simulation model. The genetic algorithm, tabu search, and a combination were
implemented and compared as part of the research. Objective functions are defined to
minimize the difference between the simulated and field traffic data obtained based on the
flow and speed of the selected urban freeway in Los Angeles.

Chen et al., 2019 [4] analyzed the effects of weather on traffic flow characteristics using
a driving simulator and microsimulation model. For collecting data on driving behaviors by
conducting weather-related driving simulation experiments, a driving simulator was used,
while microscopic traffic simulations were applied to evaluate the changes in traffic flow
characteristics by inputting driving behavior parameters coming from the driving simulator.
In this research, data on driving behavior was used to calibrate the microsimulation model,
and model validation was carried out by comparing the simulated and measured speeds.

Severino et al., 2021 [16] carried out a microsimulation approach to evaluate benefits
in terms of safety obtained with flower roundabouts [17] in a scenario where traffic is
characterized by conventional vehicles and connected autonomous vehicles. The calibration
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of the microsimulation model was made by analyzing the simulated and measured traffic
flow data, using statistical methods.

Pan et al., 2021 [18] presented a methodological procedure for the determination of
the displaced left-turn lane length, based on the entropy method, considering multiple
performance measures, including traffic efficiency index, environment effect index, and
fuel consumption. Microsimulation traffic model was used to simulate the operational and
safety performance, and model calibration was made by comparing the simulated and
actual capacity of the intersection.

Fang et al., 2022 [5] demonstrated the potential effects of the introduction of highly
autonomous vehicles and connected and automated vehicles in mixed traffic flow on
a real-life network. A microscopic traffic simulation framework that integrates vehicle
models with different automated driving functions was constructed. These functions were
implemented as an external driver model in the microscopic traffic simulator. The VISSIM-
COM programming enables the connection of MATLAB subprograms with the original
programming code for the co-simulation framework, which allows the user to calibrate
parameters with a programming approach.

Table 1 provides a brief overview of the literature related to the calibration of mi-
crosimulation traffic models.

Table 1. Overview of the different approaches to the calibration of microsimulation traffic models.

Authors Traffic Network
Segment Software Algorithm Metric

Toledo et al.,2004 [12] Intersections,
freeways MITSIMLab Box’s complex algorithm O–D flows, travel time

Park and Qi, 2005 [6] Signalized intersection VISSIM Genetic algorithm Travel time

Kim, 2006 [7] Urban arterial and
freeway VISSIM Genetic algorithm Travel time and the O–D matrix

Cunto et al., 2008 [13] Signalized intersections VISSIM Genetic algorithm Vehicle tracking data
Ištoka Otković et al.,

2013 [15] Urban roundabouts VISSIM Neural networks Travel time, queue parameters

Llorca et al., 2015 [3] Two-lane rural roads AIMSUN
Manual calibration

procedure using
mathematical tools

Passing maneuvers tracking
data, traffic flow, percent

followers and number of passing
maneuvers

Paz et al., 2015 [8] Arterial road links CORSIM Memetic algorithm Vehicle count and speed
Chiappone et al.,

2016 [9] freeway AIMSUN Genetic algorithm speed–density relationships

Yu and Wei, 2017 [10] Urban freeway VISSIM Metaheuristic algorithms Traffic flow and speed

Chen et al., 2019 [4] Urban expressway VISSIM Experimental driving
simulator data Driving behavior data, speed

Severino et al.,
2021 [16] Flower roundabout VISSIM Statistical methods (GEH) Traffic flow data

Pan et al., 2021 [18] Intersection VISSIM Statistical method
(MAPE) Traffic flow data, capacity

Fang et al., 2022 [5] Motorway VISSIM Programming code for the
co-simulation framework

Average speed, traveltime,
average delay

3. Calibration Methods
3.1. Basic Premises of the Calibration Procedure

The basic steps in the calibration procedure are as follows: the analysis of the context
of a considered problem, the choice of input parameters of the model that will be used in
the calibration procedure and their initial range, the choice of output traffic parameters of
the model to be analyzed and compared with measured values, the creation of a database
of the measured values of the observed traffic parameters and the creation of a model that
will serve as the calibration base. Validation of the calibrated model is conducted on new
sets of measured data and on a different roundabout.
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The number of input parameters, which are introduced into the analysis, and the
range of each parameter directly correlates with the number of possible combinations of
input parameters that need to be analyzed in the calibration procedure.

VISSIM has two types of parameters that can be entered into the model, which are the
measurable and difficult to measure or the non-measurable traffic parameters. Both types
of parameters have a significant impact on the simulation results.

Measurable input parameters are related to traffic volume, traffic distribution, traffic
structure, traffic regulation, timetable of public city transport vehicles, traffic infrastructure
features and dynamic traffic flow characteristics. Microsimulation traffic modeling is
applied in a smaller spatial frame, in this case an intersection and these input parameters
are easily measurable in the field. Entering the actual values of the measurable parameters
into the model significantly affects the accuracy of the model. In the framework of this
work, the measurable traffic parameters were obtained in the field and the database in [19]
are entered into the model. The exception in this example are the incoming speeds that
were not measured, so they were generated programmatically. Measurable model input
parameters are not the object of optimization.

The object of optimization in this article is the dominantly hard-to-measure and
unmeasurable input parameters of the microsimulation model, which are related to the
driver’s behavior and are locally conditioned.

The following VISSIM input parameters for the calibration procedure were chosen for
this specific traffic-spatial problem (one-lane approaches in the single-line roundabout) not
including lane changing:

P1 Simulation resolution (time steps per simulation second) in the range {3, 9} by step 1;
P2 Number of observed proceeding vehicles in the range {2, 4} by step 1;
P3 Maximum looking ahead distance (m) in the range {100, 300} by step 1;
P4 Minimum looking ahead distance (m) in the range {0, 20} by step 1;
P5 Average standstill distance (m) in the range {1, 3} by step 0.1;
P6 Additive part of the desired safety distance (m) in the range {1, 5} by step 0.1;
P7 Multiplicative part of the desired safety distance (m) in the range {1, 6} by step 0.1;
P8 Desired speed in the range {30, 50} by step 10.

Parameter P1 refers to the resolution of the simulation and the number of calculations
of positions and interactions of all traffic participants in the model, including vehicles,
pedestrians, public city transport vehicles, etc., per second of the simulation. It has an
impact on the duration of the simulation itself and the precision of the results.

Parameter P2 is connected to parameter P1 and determines the number of vehicles in
relation to which interactions of each entity in the simulation are calculated (right-of-way
rules, in the car-following modeling, behavior of traffic users in conflict zones, etc.). This
parameter has an influence on the duration of the simulation and could theoretically have
an impact on the results.

Parameters P3 and P4 are related to the driver’s behavior and are not measurable in
the field conditions.

Parameters P5–P7 are also driver behavior parameters, but related to the Wiede-
mann 74 psychophysical car-following model implemented in VISSIM. The Wiedemann 74
model was chosen, because the observed problem is within the framework of the urban
transport network.

In the VISSIM, the car-following input parameters of the Wiedemann 74 psychophysi-
cal model are described by three parameters:

• Average standstill distance (ax)—defines the average desired distance between stopped
cars (P5);

• Additive part of the desired safety distance (bx_add) (P6);
• Multiplicative part of the desired safety distance (bx_mult) (P7).

The distance d between two vehicles is computed using this formula [19]:

d = ax + bx (1)
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where:
ax is the standstill distance,

bx = (bx_add + bx_mult × z) × v (2)

v is the vehicle speed, m/s,
z is a value of range [0.1] which has a normal distribution with mean 0.5 and standard

deviation of 0.15,
bx_add is the additive part of the desired safety distance,
bx_mult is the multiplicative part of the desired safety distance.
The parameter of the desired vehicle speed (P7) may be modelled but, in order to

achieve the reality of the model, it is recommended that velocity be measured on site.
The calibration of the microsimulation model is a process aimed at optimizing (fine-

tuning) the values of the input parameters to achieve the minimum difference between
the simulated and measured traffic indicators. The subjects of optimization are the non-
measurable input parameters; therefore, their optimal values can only be evaluated indi-
rectly, through the simulation results for traffic indicators that we can measure in the field.

The output results of the simulation model are operational characteristics, such as
travel time, queue parameters, delays, dynamic characteristics; environmental parameters,
such as air pollution; economic parameters, such as fuel consumption, etc. The criterion for
selecting parameters that will be used to compare the measured and simulated values is
their simple measurability in real traffic conditions.

Operational characteristics measured in situ are:

• Traveling time between the measurement points; and
• Queue parameters: maximum queue at the entrance (m), number of stoppings at the

intersection entrance.

By comparing the simulation results and the measured values in real conditions for
the following operational indicators, the reality of modelling could be assessed.

Two roundabouts enabled a comparison of field measurements and modelling results
obtained with different methods of calibration. The first roundabout was used for model
calibration and validation methods with new sets of measured data (Figure 1a), while the
second roundabout allowed for the final validation of the calibrated model (Figure 1b).
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Figure 1. Observed roundabouts. (a) First roundabout; (b) second roundabout.

The first data collection (operational indicators, the number of vehicles and traffic
distribution at the intersection) for the first observed roundabout was made in the peak
hour of the working day (a Wednesday in March), in the period between 15:00 and 16:00
(the calibration set is shaded in the Table 2). Traffic data were collected by one-hour video
camera recordings, and the mean values of the traffic indicators are shown in Table 2
(detailed in [19]). The shaded dataset measured in situ was used to calibrate the model.
Model validation in the comparisons of the models was carried out with two new sets of
measured data at the same location and with one set of measured data at another location,
(i.e., the second observed roundabout).



Future Transp. 2023, 3 156

Table 2. The measured values of the observed traffic indicators.

First Roundabout Second Roundabout
3 March

15:00–16:00
3 March

16:00–17:00
14 July

14:00–15:00.
14 July

08:00–09:00
Mean value of traveling time (s) 21.8 19.9 18.1 13.3

Maximum queue (m) 26 21 15.5 23
Number of stops at the entrance 89 61 54 56

3.2. Comparison of the Different Methods of Computer Program Calibration

The role of neural networks is to provide a predict-function of the VISSIM simulation
output values. MATLAB code creates all possible sets of input parameters to be used by
the predict-function. It is important to emphasize that the predict-function gives almost an
instant result, while the direct application of the VISSIM in the analysis of all sets of input
parameters would be extremely time consuming.

The model approximates the satisfactory real traffic conditions if the Equation (3) is
fulfilled for one observed traffic indicator and Equation (4) for the three traffic indicators.∣∣∣∣TMOD − TMEAS

TMEAS

∣∣∣∣ ≤ 5% (3)

∣∣∣∣TMOD − TMEAS
TMEAS

∣∣∣∣ AND
∣∣∣∣QmaxMOD −QmaxMEAS

QmaxMEAS

∣∣∣∣ AND
∣∣∣∣STOPMOD − STOPMEAS

STOPMEAS

∣∣∣∣ (4)

where:
TMOD is the mean value of the modelled traveling time between measurement points,
TMEAS is the mean value of the measured traveling time between measurement points,
QmaxMOD is the mean value of the modelled maximum queue at the entrance,
QmaxMEAS is the mean value of the measured maximum queue at the entrance,
STOPMOD is the mean value of the modelled number of stops at the entrance, and
STOPMEAS is the mean value of the measured number of stops at the entrance.
A scheme of a computer program for the calibration is shown in Figure 2. Databases

of simulation results for observed traffic indicators were created in VISSIM, which was
used for the training of the neural networks (step 1). Each of the four databases, on
which the neural networks have been trained, consists of 1379 variations of model input
parameter values.
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All trained neural networks were compared according to the results achieved in the
training and test database (step 2). In the process of validation, neural networks were
examined according to the generalization capability of the new databases that were not
used for the training of the neural networks (step 3). The predict-function of the neural
networks that gave the most accurate prediction of the simulation results was used in a
computer program of the microsimulation model calibration (steps 4 and 5 in Figure 2).

The comparison criterion of the modelled and measured values of traffic parameters
created a set of potentially optimal combinations of the input parameter values in the
calibration program output file (step 6). The final optimization of the input parameters from
the set of potentially optimal solutions, generated by computer program, was performed on
the basis of a comparison of the simulation results obtained by the original microsimulation
traffic model (i.e., by VISSIM) and measuring the data in situ (steps 7 and 8 in Figure 2).

Different methods of computer program calibration were investigated and evaluated.
The number of neural networks used for the prediction and the observed output parameter
for each calibration method is shown in the Table 3. Table 3 lists the correlations achieved
by the neural network in relation to the target data, which are the results of the VISSIM
simulation for the observed parameters.

Table 3. Various applications of neural networks in the calibration.

Methods Database of VISSIM
Simulations

Input
Parameters Output Traffic Indicators Neural

Network

Response of
Neural Network
(Correlations) 1

Method I Database I 8 1
(Travel time) 1 88%

Method II Database II 8
3

(Travel time, max. queue,
no. of stops)

1
83%
52%
45%

Method III Database III 8 1 (Max. queue) 1 40%
Method IV Database IV 8 1 (No. of stops) 1 52%

Method V Database I, III and IV 8
3

(Travel time, max. queue,
no. of stops)

3
88%
40%
52%

1 Prediction of the neural network vs. VISSIM simulations on the trained database.

Use of Neural Networks Prediction of the VISSIM Simulation

Within the present paper, four models were formed using neural networks, (Table 3).
The last method of applying neural networks combines three previously created models in
predicting traffic indicators.

The training of the neural networks and the analysis of the prediction results were
made using the NeuroShell2 program. The following networks were tested: ward nets,
standard nets, jump connection nets, Jordan–Elman nets and general regression net [20].
When creating a neural network learning database, the NeuroShell2 program can extract
certain data percentages of the test dataset, which the network will not use for training
but for the testing of the learning success on the training dataset (the remaining data of
the database). In this analysis, 20% of the data obtained by random selection from the
input database were used for the test dataset. For the back-propagation type of neural
networks, the best prediction results were preserved for the test and training dataset. For
the training dataset, the neural network gives predictions for the data about which it
has learnt, whereas the test dataset is not available to the learning network and is used,
therefore, for the evaluation of the network generalization ability. For regressive networks,
the two network sub-types were analyzed: the adaptive and iterative network types.

The number of hidden layers and neurons in hidden layers varied due to the neural
network reaction on the change of layers and number of neurons (better or worse prediction
results). Altogether, 176 neural networks were analyzed during testing and evaluation
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of the optimal neural networks for prediction needs by all calibration methods. Neural
networks (70) trained on Database I differed in architecture, the number of hidden layers,
the number of neurons in hidden layers, and activation functions. Neural networks, 72 of
them, were trained on Database II. Networks tested on Databases III (20) and IV (14) were
selected on the basis of the results that they gave in Database II.

All trained neural networks were compared according to the results achieved on
the training dataset (evaluation of the network trainings) by using the following criteria:
correlation, mean absolute error, maximum absolute error and percentage of results with
error smaller than 5%, detailed learning and generalization results of the trained neural
networks shown in [20].

In the process of test validation (Figure 2), all networks were examined according to
generalization capability (the ability to predict the unknown input data).

The final selection of the neural network, which gives the most accurate prediction of
the simulation results for each database, was made on the basis of the validation results. The
validation dataset consisted of 64 new combinations of input parameter values and output
traffic parameters. Prediction error is calculated as the absolute difference value between
prediction results obtained by the neural network and values obtained by the VISSIM
simulation. The criterion for selection of a neural network to be used in the calibration
procedure for each calibration method is a minimum mean absolute error on the validation
dataset. The best results were achieved by the general regression neural network type for
all databases on which the neural networks were trained.

Networks that gave the best prediction results in relation to expected results (VISSIM
simulation results) according to the criterion of the minimum mean absolute error were
(Figure 3):

• Database I: General regression type networks, one hidden layer with 5500 neurons,
modified activation function in the logistic function, an iterative type of network
(GR5500-logist IT) (Figure 3a);

• Database II: General regression type networks, one hidden layer with 2500 neurons,
modified activation function in logistic function, an iterative type of network (GR2500-
logist IT) (Figure 3b);

• Database III: General regression type networks, one hidden layer with 2500 neurons,
scale function-non, genetic, adaptive type of network, genetic breeding pool size 100
(GR2500-non AD100) (Figure 3c);

• Database IV: General regression type networks, one hidden layer with 2500 neurons,
scale function-non, genetic, adaptive type of network, genetic breeding pool size 100
(GR2500-non AD100) (Figure 3d).
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Method V using uses the predict-function of three neural networks of Databases I, III
and IV.

Mathematical models (prediction-functions) generated by trained neural networks can
be obtained in mathematical notation, but due to its length and complexity, it is not directly
applicable in practice for calculating the prediction value (it is described in detail in [19]).
In the calibration program, the predict-function was used as a subroutine in MATLAB,
and it is possible to import the predict-function into Excel to check the prediction on an
unknown dataset and evaluate the generalization of the model, which was carried out in
the framework of this work on an independent database.

The calibration of the microsimulation model is a process aimed at fine-tuning the
values of the input parameters that will give a minimum discrepancy between the simulated
and measured traffic indicators.

In this study, the objective functions are formulated as mean absolute normalized error
(MANE) [10] are provided by Equations (5)–(8).

minMANE(T) =
1
N ∑N

j=1

(
|Tmod − Tmeas|

Tmeas

)
(5)

minMANE(Qmax) =
1
N ∑N

j=1

(
|Qmaxmod −Qmaxmeas|

Qmaxmeas

)
(6)

minMANE(STOP) =
1
N ∑N

j=1

(
|STOPmod − STOPmeas|

STOPmeas

)
(7)

minMANE(T, Qmax, STOP) =
1
N ∑N

j=1

(
|Tmod − Tmeas|

Tmeas
+
|Qmaxmod −Qmaxmeas|

Qmaxmeas
+
|STOPmod − STOPmeas|

STOPmeas

)
(8)

The modeled and measured values of the observed traffic parameters were compared
(explained in more detail in Section 3.2), and N is the number of observations. The objective
Equations (5)–(7) were applied to Methods I, III and IV respectively, and the objective
Equation (8) was applied to Methods II and V.

According to the correlations achieved by the neural network in relation to VISSIM
(Table 3), Methods III and IV did not achieve satisfactory correlations, so they will not be
further analyzed as potential calibration methods. The results obtained by Methods I, II
and V are analyzed in detail below.

4. Results
4.1. Testing of the Output Program Results in VISSIM

The process of program calibration was achieved with MATLAB code, designed for
the needs of each individually analyzed calibration method, discussed in more detail
in [19]. The prediction-function obtained by training the neural network (NeuroShell2)
was used as a sub-program in the calibration program. Output data files of each method
were created for specified statistical criteria according to expression (3) for Method I and
to expression (4) for Methods II and V. Correspondence evaluation (correspondence of
datasets obtained by computer program calibration (output file) and the set of real VISSIM
simulation values for the same values of input parameters) of each output dataset, which
was based on actual VISSIM simulation results, was crucial for the assessment of the
applicability of neural networks in the computer program calibration. Due to the size of
the output dataset, the correspondence evaluation was made based on the dataset of 100
VISSIM simulations for each method, which can be considered only as a relative indicator
intended for method comparison.

For Method I, which analyzed one traffic indicator—travel time, the results’ correspon-
dence of the output dataset and actual VISSIM simulation values was 80%. If the set of
potentially optimal combinations of input parameters with 80 combinations is analyzed in
the context of calibration by queue parameters obtained by VISSIM simulations, it results
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in 13 combinations (Table 4) of input parameters that satisfy all three indicators according
to expression (4). In the field, measured maximum queue for the calibration dataset was
26 m and number of stoppings at the entrance was 89 (Table 2).

Table 4. Validation by the other traffic indicators (set I of the measured data)—Method I.

Combination of the Input Parameters Neural Net. Prediction VISSIM Result
P1 P2 P3 P4 P5 P6 P7 P8 T T Qmax STOP
6 4 164 8 2.4 2 3.3 40 21.267 20.8 25 86
6 4 172 8 2.4 1.9 3.4 40 21.303 20.8 25 90
6 4 172 8 2.4 1.9 3.5 40 21.295 20.9 25 89
6 4 172 8 2.5 1.9 3.3 40 21.295 20.8 25 86
6 4 172 12 2.4 1.9 3.4 40 21.271 20.8 25 90
6 4 172 12 2.4 1.9 3.5 40 21.264 20.9 25 89
6 4 172 12 2.5 1.9 3.3 40 21.283 20.8 25 86
6 4 173 8 2.4 1.9 3.4 40 21.298 21.1 25 85
6 4 173 12 2.4 1.9 3.4 40 21.298 21.1 25 85
6 4 175 8 2.5 1.9 3.5 40 21.262 21.0 25 85
6 4 176 8 2.4 1.8 3.5 40 21.275 21.4 27 88
6 4 176 8 2.5 1.8 3.4 40 21.273 20.9 27 90
6 4 176 12 2.5 1.8 3.4 40 21.273 20.9 27 90

Combinations of the input parameters that were the closest to the measured values in
situ (21.8 s) are shaded in Table 3. Two bolded combinations of input parameters, which
present the best result, entered the second step of the evaluation procedure. The value of
the simulated time of 21.4 s was the best result and, for the second combination, one of two
practically identical combinations was selected. VISSIM, unlike neural networks, gave the
same values of traffic indicators (P4 = 8 and P4 = 12), such that one of two combinations,
which differs only by the fourth input parameter P4, was selected.

For Method II, the correspondence of all three parameters was 2% for the output data
file of Method II (Table 5), and for the output files of Method V, was 7% (Table 6).

Table 5. The best combinations of input parameters of Method II.

Combination of the Input Parameters Neural Network Prediction VISSIM Result

P1 P2 P3 P4 P5 P6 P7 P8 T Qmax STOP T Qmax STOP

9 4 250 0 2.1 3.1 3.8 40 20.18 24.72 80.13 20.9 25 87
9 4 250 0 2.1 3.1 4.0 40 20.20 24.72 80.16 20.8 25 87

Table 6. The best combinations of input parameters of Method V.

Combination of the Input Parameters Neural Network Prediction VISSIM Result

P1 P2 P3 P4 P5 P6 P7 P8 T Qmax STOP T Qmax STOP

9 2 247 8 2.1 2.7 4.3 40 20.94 24.71 85.31 20.8 27 88

9 2 266 8 2.1 2.8 4.3 40 20.94 24.71 85.31 21.0 25 86

9 2 272 8 2.1 2.9 4.2 40 20.93 24.71 85.96 21.3 25 87

9 2 264 8 2.1 2.8 4.2 40 20.93 24.71 85.96 20.9 25 85

9 2 254 8 2.1 2.8 4.3 40 20.92 24.751 85.31 20.8 25 87

9 2 264 8 2.1 3.1 4.3 40 20.92 24.71 85.31 21.3 25 91

9 2 255 8 2.1 2.7 4.2 40 20.92 24.71 85.96 21.3 25 86
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An interesting insight can be obtained by analyzing the number of vehicles that the
model could not generate in the designated simulation time (one hour). Having in mind
that the recorded number of vehicles de facto went through the roundabout in real field
conditions in the examined time interval, it can be concluded that some combinations of
input parameter values significantly reduce the modelled capacity of the intersection.

The final selection criterion for the two combinations by Method V was the magnitude
of simulation error, which VISSIM registered after a one-hour simulation. The microsim-
ulation tool reported an error for all three combinations, failing to generate any of the
vehicles during the simulation process. For a small number of vehicles, it is generally not a
problem because VISSIM does not simulate the exact number of vehicles, only the traffic
distribution of the vehicles. For the first combination of input parameters, the model did
not generate eight vehicles and, for the third, 10. Yet, this did not significantly change the
final traffic image. For the second parameter combination, however, the model did not
generate 35 vehicles, which means that the combination of input parameters reduces the
capacity of the roundabout and, after all, might have affected simulated traffic indicators.
Therefore, the first and third shaded combinations of input parameters were selected for
the validation procedure.

4.2. Methods Validation by Comparison of VISSIM Simulation Results and Measured Indicators

The first validation was performed at the same roundabout at which the calibration
procedure was carried out. The first dataset of traffic parameters for the validation was
measured on a Wednesday in March, between 16:00 and 17:00. Measured values of traffic
parameters and values obtained by VISSIM simulation for default values of input parame-
ters, as well as the two best parameter combinations obtained by each calibration method,
are shown and compared in Table 7.

Table 7. Comparison of the traffic indicators—first validation.

Input Parameters of the VISSIM Model Traffic Indicators
P1 P2 P3 P4 P5 P6 P7 P8 T Qmax STOP

Measured Values
19.9 21 61

Values Obtained by the VISSIM Model Simulations
Default Values of the Input Parameters

5 2 250 0 2 2 3 40 20.3 15 60
Method I

6 4 176 8 2.4 1.8 3.5 40 19.8 22 58
6 4 173 8 2.4 1.9 3.4 40 20.2 15 63

Method II
9 4 250 0 2.1 3.1 3.8 40 19.9 19 63
9 4 250 0 2.1 3.1 4.0 40 20.0 15 55

Method V
9 2 272 8 2.1 2.9 4.2 40 20.2 15 57
9 2 255 8 2.1 2.7 4.2 40 19.6 15 52

For the first validation procedure, simulation results closest to the measured values
were provided by the combination of input parameters obtained by calibration, according
to Method I (shaded in Table 7).

The second validation model (the comparison of the measured and simulated values)
was based on the data measured on a Wednesday in July, between 14:00 and 15:00, at the
same location at which the calibration was performed (Table 8). Table 8 shows that default
values of the input parameters resulted in correct simulation results for traveling time; this
was not the case with the queue parameters, which did not enter specified statistical limits.
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Both parameter combinations obtained by calibration procedures of Method I (shaded)
satisfied the limit set by expression (4) when approaching the values measured in the field.

Table 8. Comparison of the traffic indicators—second validation.

Input Parameters of the VISSIM Model Traffic Indicators
P1 P2 P3 P4 P5 P6 P7 P8 T Qmax STOP

Measured Values
18.1 15.5 54

Values Obtained by the VISSIM Model Simulations
Default Values of the Input Parameters

5 2 250 0 2 2 3 40 17.6 23 50
Method I

6 4 176 8 2.4 1.8 3.5 40 17.6 15 52
6 4 173 8 2.4 1.9 3.4 40 17.8 15 53

Method II
9 4 250 0 2.1 3.1 3.8 40 17.6 24 46
9 4 250 0 2.1 3.1 4.0 40 17.5 24 44

Method V
9 2 272 8 2.1 2.9 4.2 40 18.0 24 50
9 2 255 8 2.1 2.7 4.2 40 18.3 24 52

The third validation was made at the new location, the second observed roundabout
(Figure 1b). The second observed intersection is an urban one-lane roundabout, with
similar geometric characteristics and the same functional level as the first roundabout.
Both roundabouts introduce traffic from the express city road into the city network. The
measured traffic indicators for the second intersection are presented in Table 2. Data were
collected and traffic parameters measured on a Wednesday morning in July, between 08:00
and 09:00. Traffic volume, distribution and traffic structure for both roundabouts are
presented in more detail in [19]. VISSIM simulation values for the default values of the
input parameters and the two best parameter combinations, which were obtained by each
calibration method, were compared with measured values of traffic parameters and are
presented in Table 9.

Table 9. Comparison of the traffic indicators—third validation.

Input Parameters of the VISSIM Model Traffic Indicators
P1 P2 P3 P4 P5 P6 P7 P8 T Qmax STOP

Measured Values
13.3 23 56

Values Obtained by the VISSIM Model Simulations
Default Values of the Input Parameters

5 2 250 0 2 2 3 40 13.1 27 50
Method I

6 4 176 8 2.4 1.8 3.5 40 13.1 22 58
6 4 173 8 2.4 1.9 3.4 40 13.1 22 54

Method II
9 4 250 0 2.1 3.1 3.8 40 13.6 21 62
9 4 250 0 2.1 3.1 4.0 40 13.7 21 64

Method V
9 2 272 8 2.1 2.9 4.2 40 13.6 20 63
9 2 255 8 2.1 2.7 4.2 40 13.6 22 65



Future Transp. 2023, 3 163

Default values of the input parameters gave simulation values of traveling time within
specified limits, but the queue parameter results were not within the expected range. Both
parameter combinations obtained by calibration procedures of Method I (shaded) satisfied
the limit set by expression (4) for the second roundabout.

The iterative evaluation process of the calibration results is presented in Tables 7–9.
The overview of the obtained simulation results with default input parameters, as well
as two selected combinations of input parameters of each calibration method, gave the
summary presented in Table 10. Traffic parameter values, which met the statistical criteria
set by mathematical expression (4) are indicated by a tick (3), while those that did not are
indicated by a cross mark (5).

Table 10. Summary evaluation of the simulated traffic parameters in relation to the measured ones.

Default Method I Mathod II Method V

Time Queue Time Queue Time Queue Time Queue

T Qmax STOP T Qmax STOP T Qmax STOP T Qmax STOP

1 1 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

Calibration 5 5 5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

Validation I 3 5 3 3 3 3 5 3 3 3 3 5 5 3 5 3 3 5 5 5 5

Validation II 3 5 5 3 3 3 3 3 3 3 3 5 5 5 5 3 3 5 5 5 3

Validation III 3 5 5 3 3 3 3 3 3 3 3 5 5 5 5 3 3 5 3 5 5

1 first selected combination of input parameters; 2 second selected combination of input parameters.

Table 10. shows that the combination of input parameters with default values that
give the biggest differences between the simulation values in relation to the measured ones.

It is evident from Table 10 that both combinations of input parameters obtained by all
calibration methods for the output indicator of the traveling time gave simulation values
within the pre-set statistical criterion (3).

By analyzing and comparing the results of the traffic parameter values shown in
Tables 7–9, and particularly by analyzing summary Table 10, one can notice the combination
of input parameters that satisfied all of the observed indicators within the pre-set limits,
which is the first combination of input parameters obtained by the calibration procedure in
Method I (Table 10, shaded), according to expression (4).

The optimal parameter values of the VISSIM simulation model obtained by the cali-
bration and the iterative validation procedure for single-lane roundabouts in Osijek are
shown in Table 11.

Table 11. Optimal values of the VISSIM input parameters for single-lane roundabouts.

Optimal Values of the VISSIM Model Input Parameters

P1 Simulation resolution 6

P2 Number of observed proceeding vehicles 4

P3 Maximum looking ahead distance (m) 176

P4 Minimum looking ahead distance (m) 8

P5 Average standstill distance (m) 2.4

P6 Additive part of the desired safety distance (m) 1.8

P7 Multiplicative part of the desired safety distance (m) 3.5

P8 Desired speed 40

The analysis of the influence of each individual input parameter on the prediction
result given by the neural network, which is presented in more detail in [19], did not
eliminate parameter 2, but its influence in the application of the microsimulation model
was not significant.
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According to the obtained results at the new location, the second observed roundabout
(Table 8), the optimal combination of parameters is applicable to the reference problem
(single-lane roundabout) in the local condition, and is not only applicable on the roundabout
that was used for model calibration.

4.3. Statistical Comparison of the Raw Datasets of the Simulated and Measured Data

The dataset of measured travel times between the selected measuring points was
formed in a one-hour recording of the roundabout. The left turn traffic flow was chosen,
because it takes the longest time in the roundabout, has the lowest speed, and shows the
greatest sensitivity to the design elements of the intersection.

Bearing in mind the stochastic nature of the traffic flow, various scenarios of vehicle
arrivals in the observed time of one hour were analyzed using a calibrated model. The
travel time dataset obtained by simulation was formed as the mean value of ten different
vehicle arrival scenarios, the initial value of the random number generator (random seed)
was 42, and the increment was 10.

In all observed scenarios, the same measurable elements of traffic regulation were used,
which have a significant impact on traffic conditions, such as the actual timetable of trams
and buses for public transport. The tram line passes over the observed incoming traffic
lane into the roundabout (Figure 1a), which significantly affects the dynamic characteristics
of the incoming flows of the observed traffic flow of vehicles.

Near the observed roundabout there is an intersection with traffic lights, which, due
to its location has a significant influence on the traffic flows of the observed roundabout,
so the traffic lighted intersection is included in the model of the observed roundabout.
In the simulations, a real signal program of the traffic light regulation was used, which
regulates the traffic at the intersection near the observed roundabout and has an impact on
the incoming and outgoing flows of vehicles.

Table 12 shows the basic statistical indicators for the measured and simulated travel
times simulated with the calibrated VISSIM, for all vehicles of the observed traffic flow in
the roundabout.

Table 12. Basic statistical indicators for the measured and simulated travel times.

N Mean StDev Median Min Max A–D Test p-Value

Measured 135 21.8 6.046 21.00 12.00 43.00 2.952 <0.005
Simulated 135 21.4 5.875 20.00 12.00 40.00 4.306 <0.005

The normality of the data distribution test for the two observed datasets serves as an
initial test for choosing a statistical test for comparing two observed datasets.

The normality of the data distribution for the two observed datasets was tested by
performing the Anderson–Darling test. The null hypothesis of the test is that data follow
a normal distribution and a significance level of 0.05 was set. The probability plot for
each dataset is shown in Figure 4. According to the results of the Anderson–Darling test
(Table 12, Figure 4), the p-value is less than the set threshold and the null hypothesis is
rejected, which means none of the groups of observed data follow a normal distribution.

A parametric test (ANOVA) is applied to the normally distributed data, but according
to the results, it is necessary to apply non-parametric tests, such as Bonett and Levene, for
comparison. Datasets of measured and simulated travel times were compared with the
aim of determining whether they are statistically significantly different or not. The null
hypothesis was set that the relationship between the standard deviations and the variance
of the two observed datasets is equal to 1, and a significance level of 0.05 was set. The
results are presented in Tables 13 and 14.



Future Transp. 2023, 3 165

Future Transp. 2023, 3, FOR PEER REVIEW  16 
 

 

4.3. Statistical Comparison of the Raw Datasets of the Simulated and Measured Data 

The dataset of measured travel times between the selected measuring points was 

formed in a one-hour recording of the roundabout. The left turn traffic flow was chosen, 

because it takes the longest time in the roundabout, has the lowest speed, and shows the 

greatest sensitivity to the design elements of the intersection. 

Bearing in mind the stochastic nature of the traffic flow, various scenarios of vehicle 

arrivals in the observed time of one hour were analyzed using a calibrated model. The 

travel time dataset obtained by simulation was formed as the mean value of ten different 

vehicle arrival scenarios, the initial value of the random number generator (random seed) 

was 42, and the increment was 10. 

In all observed scenarios, the same measurable elements of traffic regulation were 

used, which have a significant impact on traffic conditions, such as the actual timetable of 

trams and buses for public transport. The tram line passes over the observed incoming 

traffic lane into the roundabout (Figure 1a), which significantly affects the dynamic char-

acteristics of the incoming flows of the observed traffic flow of vehicles. 

Near the observed roundabout there is an intersection with traffic lights, which, due 

to its location has a significant influence on the traffic flows of the observed roundabout, 

so the traffic lighted intersection is included in the model of the observed roundabout. In 

the simulations, a real signal program of the traffic light regulation was used, which reg-

ulates the traffic at the intersection near the observed roundabout and has an impact on 

the incoming and outgoing flows of vehicles. 

Table 12 shows the basic statistical indicators for the measured and simulated travel 

times simulated with the calibrated VISSIM, for all vehicles of the observed traffic flow in 

the roundabout. 

Table 12. Basic statistical indicators for the measured and simulated travel times. 

 N Mean StDev Median Min Max A–D Test p-Value 

Measured 135 21.8 6.046 21.00 12.00 43.00 2.952 <0.005 

Simulated 135 21.4 5.875 20.00 12.00 40.00 4.306 <0.005 

The normality of the data distribution test for the two observed datasets serves as an 

initial test for choosing a statistical test for comparing two observed datasets.   

The normality of the data distribution for the two observed datasets was tested by 

performing the Anderson–Darling test. The null hypothesis of the test is that data follow 

a normal distribution and a significance level of 0.05 was set. The probability plot for each 

dataset is shown in Figure 4. According to the results of the Anderson–Darling test (Table 

12, Figure 4), the p-value is less than the set threshold and the null hypothesis is rejected, 

which means none of the groups of observed data follow a normal distribution. 

  

Figure 4. The probability plot for the measured and simulated data. Figure 4. The probability plot for the measured and simulated data.

Table 13. Standard deviations and variances.

StDev Ratio Variance Ratio

Measured 6.046
1.029

36.549
1.059Simulated 5.875 34.510

Table 14. Statistical test results.

Method Statistic Test p-Value CI for StDev Ratio CI for the Variance Ratio

Bonett 0.06 0.806 0.816; 1.302 0.666; 1.695
Levene 0.43 0.514 0.857; 1.369 0.735; 1.874

CI—95% Confidence Intervals.

According to the results shown in Table 14, the null hypothesis cannot be rejected, which
means that the difference between the two observed datasets is not statistically significant.

5. Discussion

By reviewing the literature (Section 2), it is possible to see a significant diversity in the
approach to the calibration of microsimulation traffic models. Of the applied calibration
algorithms, the genetic algorithm prevails. The methodological approach of applying neural
networks has proven to be effective [15] and within the framework of this paper, different
methods of applying neural networks in the process of calibrating a microsimulation traffic
model were analyzed.

From the initial five, three methods of application of neural networks in the calibration
were analyzed in detail. Calibration methods varied in the number of output traffic
indicators predictable by a neural network and number of neural networks used in the
program calibration procedure. Altogether, 176 predictive neural networks were trained
and analyzed within the NeuroShell2 program. Each database for neural networks training
has 1379 combinations of input parameters and output operational indicators of VISSIM
simulations. The paper [20] presents the results of the comparison of learning results on the
training dataset of all trained networks according to selected criteria. The neural network
for each calibration method was chosen by the two-step evaluations (results of learning
and generalization) of neural networks.

The process of program calibration was realized in the MATLAB program designed for
the needs of each individually analyzed calibration method [19]. The exported prediction-
function obtained by training the neural network (NeuroShell2) was used as a subroutine
in the calibration program.

Model validation is the evaluation of calibration model efficiency by comparison of
modelled and measured traffic parameters. The basic requirement, that every calibrated
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traffic microsimulation model must meet, is that it can be successfully validated with a new
set of data of the same type, in this case traveling time between the measurement points.
A higher standard of validation is reached if the model calibrated for traveling times data
also gives good estimates of other parameters, such as queue parameters [21].

The validation activity in this research was performed iteratively, in three steps. For
all three methods, there were three validations based on the comparison of correspondence
aggregate data of the simulation results obtained by the calibrated VISSIM and new sets
of measured data. Two validations were conducted at the same location at which the
calibration was carried out. The third validation was performed at the new location in order
to verify the applicability of selected parameters on the type of considered intersection,
rather than only at the location where the calibration was carried out.

Validation of the computer program calibration method led to the selection of the
optimal combination of input parameter values of the VISSIM model.

The comparison and evaluation of mean values of the simulation parameter in re-
lation to those measured in the field for all field datasets is shown in Table 10. The
method that gave the optimal combination of input parameters was the neural network-
based method, which provided the prediction for the traveling time between the selected
measurement points.

According to the results in Tables 7–10, it was shown that the calibration method
that uses travel time as a traffic indicator gives good results for the queue parameters,
which were not used in the calibration procedure. This is a somewhat unexpected result,
because the other two methods use neural network predictions for travel time and queue
parameters in the calibration process. The result is nevertheless logical, when taking into
account the results in Table 3, which show that the neural network does not give a good
prediction for the queue parameters, while for the prediction of the travel time it gives a
good correlation with the VISSIM data. The neural network that served as a prediction tool
for the mentioned calibration method achieved the best correlation on the training dataset
(88.3%) and generalization, i.e., the best prediction of traffic indicators on unknown data (it
had the lowest mean absolute error).

The last step of the model validation made in this research is the analysis of disag-
gregated data for measured and simulated travel times of observed vehicle traffic flow,
using statistical tools. The set of data obtained by simulation with a calibrated model is
the mean value of ten different traffic scenarios of vehicle arrivals, in accordance with the
stochastic nature of the traffic flow. Bearing in mind that the observed datasets do not
follow a normal distribution, the Bonett and Levene tests for two variances and standard
deviations were applied. According to the results of the conducted statistical tests, the
difference between the two observed datasets is not statistically significant. This result is
the expected confirmation of earlier results of the validation of the calibration method.

In the continuation of the research, the calibration methodology using neural networks
was applied to another type of intersection in another city with significantly different local
conditions and the results proved to be equally good in calibrating the microsimulation model.

6. Conclusions

The best insight into the success of the calibration of the model provides a comparison
of the simulated and measured traffic indicators. For this study, we created four sets of
measured data in two single-lane roundabouts. Measurement of traffic data in situ was
made in real-life traffic conditions, measuring and recording traffic with a video camera for
a period of one hour. Comparison of the measured data and those obtained by simulation
with a calibrated and uncalibrated microsimulation model was also conducted. This paper
presents the results of the comparison of different methods of neural network approaches
for the calibration of microsimulation traffic models. From the initial five methods of
applying neural networks in the calibration process, three methods were selected for
detailed analysis according to the criterion of good correlation for at least one traffic
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indicator. The research results show that neural networks are applicable in the calibration
of microsimulation traffic models.

The results lead to the following conclusions:

• The first combination of input parameters values of Method I satisfied the statistical
criteria set by expression (4) for all validation procedures;

• Results of the simulated values of the output indicator, travel time, satisfied the
statistical criteria by expression (3) according to all methods; and

• Simulation results with default values of input parameters least corresponded with
the measured values.

The combination of input parameters (Table 11) that satisfied the statistical criteria
set by expression (4) in each validation procedure with aggregate data, was the first
combination of parameters obtained by a calibration method that uses neural network
prediction for travel time. This method was based on the neural network that achieved the
best correlation with the VISSIM simulations on the training dataset (88.3%) and which
gave the smallest mean absolute error in the generalization procedure. This method, based
on the VISSIM example, is generally recommended for use in the process of program
calibration of traffic microsimulation models.

According to the obtained results, the optimal combination of parameters is applicable
to the reference problem (single-lane roundabout) and is not locally conditioned (only on
the observed roundabout). Such a conclusion should be taken with caution, considering
the fact that this research was based only on two single-lane roundabouts. In that sense, the
possibility of generalization of the obtained values of input parameters on other types of
roundabouts, or intersections in local conditions in general, should be further researched.
The most calibrated input parameters are related to drivers’ behavior (psychology), which
is always territorially and culturally conditioned.

The other two researched methods of computer program calibration which are based
on the simultaneous calibration of several traffic indicators, open the door to further
research into appropriate configurations of neural networks that can provide a better
correlation for queue parameters.

Tables 6–9 show that the model calibrated with a recommended method of calibration
gave simulation results that differ from the measured data for less than 5%, for all sets of
measured data and for all observed traffic indicators.

To evaluate the difference between the two sets of disaggregated data for the measured
and simulated travel times with the calibrated model, statistical tests were used and the
results showed that there is no statistically significant difference between the two sets
of data.

The scientific contribution of this article is that it analyzes in detail different methods
of applying neural networks in the process of calibrating a traffic microsimulation model.
The use of neural networks in the calibration process is an innovative methodological
approach (Table 1) which, according to the obtained results, has potential.

The weaknesses of this research are that only two roundabouts were analyzed, which
does not provide enough breadth for generalizing the conclusions. The neural networks
used in this research are those available in NeuroShell2 expert software. It should certainly
be taken into account that some other tools are available in the research of the optimal type
and configuration of neural networks, which should be further investigated.

Comparison results of the modelled and measured data show that the calibrated
VISSIM microsimulation model, by using a neural network, was able to provide modelling
results that reflected real traffic characteristics at observed roundabouts in local conditions.

Author Contributions: Conceptualization, I.I.O., T.T., M.Š. and D.V.; methodology, I.I.O., T.T. and
M.Š.; software, I.I.O. and D.V.; validation, I.I.O., T.T. and M.Š.; formal analysis, I.I.O.; investigation,
I.I.O., T.T. and M.Š.; data curation, I.I.O.; writing—original draft preparation, I.I.O. and D.V.; writing—
review and editing, T.T. and M.Š.; visualization, I.I.O. and D.V.; supervision, T.T. and M.Š. All authors
have read and agreed to the published version of the manuscript.



Future Transp. 2023, 3 168

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: https://dk.um.si/IzpisGradiva.php?id=18811&lang=eng (accessed on
15 December 2022).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Flötteröd, G.; Bierlaire, M.; Nagel, K. Bayesian demand calibration for dynamic traffic simulations. Transp. Sci. 2012, 45, 541–561.

[CrossRef]
2. Shahdah, U.; Saccomanno, F.; Persaud, B. Application of traffic microsimulation for evaluating safety performance of urban

signalized intersections. Transp. Res. Part C Emerg. Technol. 2015, 60, 96–104. [CrossRef]
3. Llorca, C.; Moreno, A.T.; Lenorzer, A.J. Casas and A. Garcia. Development of a new microscopic passing manoeuvre model for

two-lane rural roads. Transp. Res. Part C Emerg. Technol. 2015, 52, 157–172. [CrossRef]
4. Chen, C.; Zhao, X.; Liu, H.; Ren, G.; Zhang, Y.; Liu, X. Assessing the Influence of Adverse Weather on Traffic Flow Characteristics

Using a Driving Simulator and VISSIM. Sustainability 2019, 11, 830. [CrossRef]
5. Fang, X.; Li, H.; Tettamanti, T.; Eichberger, A.; Fellendorf, M. Effects of Automated Vehicle Models at the Mixed Traffic Situation

on a Motorway Scenario. Energies 2022, 15, 2008. [CrossRef]
6. Park, B.; Qi, H. Development and Evaluation of Simulation Model Calibration Procedure. Transp. Res Rec. 2005, 1934, 208–217.

[CrossRef]
7. Kim, S.J. Simultaneous Calibration of a Microscopic Traffic Simulation Model and OD Matrix. Ph.D. Thesis, Texas A&M University,

College Station, TX, USA, 2006.
8. Paz, A.; Molano, V.; Martinez, E.; Gaviria, C.; Arteaga, C. Calibration of traffic flow models using a memetic algorithm. Transp.

Res. Part C Emerg. Technol. 2015, 55, 432–443. [CrossRef]
9. Chiappone, S.; Giuffrè, O.; Granà, A.; Mauro, R.; Sferlazza, A. Traffic simulation models calibration using speed–density

relationship: An automated procedure based on genetic algorithm. Expert Syst. Appl. 2016, 44, 147–155. [CrossRef]
10. Yu, M.; Wei, D.F. Calibration of microscopic traffic simulation models using metaheuristic algorithms. Int. J. Transp. Sci. Technol.

2017, 6, 63–77. [CrossRef]
11. Sacks, J.; Rouphail, N.; Park, B.; Thakuriah, P. Statistically Based Validation of Computer Simulation Models in Traffic Operations

and Management. J. Transp. Stat. 2002, 5, 1–24.
12. Toledo, T.; Ben-Akiva, M.E.; Darda, D.; Jha, M.N.; Koutsopoulos, H.N. Calibration of microscopic traffic simulation models with

aggregate data. Transp. Res. Rec. 2004, 1876, 10–19. [CrossRef]
13. Cunto, F.; Saccomanno, F.F. Calibration and validation of simulated vehicle safety performance at signalized intersections. Accid.

Anal. Prev. 2008, 40, 1171–1179. [CrossRef] [PubMed]
14. Flötteröd, G.; Chen, Y.; Nagel, K. Behavioral calibration and analysis of a large-scale travel microsimulation. Netw. Spat. Econ.

2011, 12, 481–502. [CrossRef]
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