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Abstract: In this paper, initial experiments were carried out to determine the possibility of using
chicken feathers instead of sand in mortar. After earlier research suggested that chicken feathers had
a high durability and resilience to degradation, chicken feathers recovered from slaughterhouses
were chosen due to the significant cross-linking and strong bonding within their structure. Compared
to natural sand, chicken feather sand (CFS) works as an eco-friendly resource. In this study, the
chicken feather content ranged from 5% to 25% of the total volume of fine aggregates. The findings
confirmed that the compressive strengths of the specimens are inversely proportional to the amount
of feathers added. The specimen with 10% CFS had a compressive strength of 57.8 MPa after 28 days
of curing. As the weight of CFS in the mortar increased from 1.26% to 10% of the control mixture, the
workability significantly decreased. After soaking in water for 24 h, materials with higher proportions
of feathers had a noticeably decreased compressive and flexural strength as well as increased water
absorption and swelling. For 80% of the CFS replacement, the results are good. Additional CFS
replacement tends to reduce the mortar weight.

Keywords: chicken feather sand (CFS); eco-friendly mortar (EM); compressive strength; flexural
strength; surface morphology

1. Introduction

Concrete and mortar are both the most popular and expensive materials in the con-
struction industry [1,2]. Many contemporary businesses are having trouble developing an
economical and environmentally sound strategy to dispose of waste. The main reasons
for this are growing challenges in locating disposal locations and strict environmental
policy requirements for waste management and disposal regulations. Each year, the poultry
processing industry produces a sizable amount of byproducts, such as feathers that globally
weigh 40 × 109 kg in total [3,4]. Legislative requirements and current best practices, such
as the Zero Waste Initiative in South Africa, control how this waste is managed, which
raises environmental and health concerns [5,6]. Common waste disposal methods, such as
incineration, landfilling, and composting, all generate greenhouse gases, use a large amount
of energy, and require a large amount of landfill space [7]. Chicken feathers are made up of
91% keratin, 8% water, and 1% lipids [8,9]. The mechanical qualities of chicken feathers are
closely linked to their functions, and the mechanical properties are linked to the keratin
structure. Keratin’s structure enables the transfer of forces with minimal deformation. The
elasticity moduli of feather keratin have been observed to vary between 0.045 and 10 GPa.
The Young’s modulus of oven-dried chicken feather fibers was found to be between 3 and
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50 GPa, while the tensile strength was determined to be between 41 and 130 MPa [10].
In response to the growing construction industry, various studies have been performed,
particularly in developing countries, to enhance chicken feathers’ characteristics and be-
haviors [11–13]. However, the widespread use of mortar in a wide range of constructions
and applications has begun to impose a strain on the environment. Tons of carbon dioxide
(CO2) are released during the excavation, construction, and logistical phases of the cement
manufacturing process [14]. Dredging for sand and gravel also pollutes the water, affecting
the water level gradient and reducing biodiversity [15]. Kumar Sharma [16] demonstrated
that chicken feathers can be utilized as a mortar additive, and it has been claimed that
chicken feathers can replace a certain quantity of fine aggregates while maintaining fine
aggregate qualities, hence reducing mortar weight. Except for washing and drying them
to remove biological contaminants, most research used chicken feathers without any heat
treatment before mortar mixing [17]. The compressive strength of the mortar cannot be
improved by substituting up to 100% of the sand in the mortar as binder material [18].
Since the use of chicken feather fibers could be possible as part of sand replacement in
mortar, this could act as an environmental catalyst leading towards an environmentally
friendly mortar [19–22]. Regarding the effects of acids, feathers have a good chemical
resistance to mild acids, but since they have a low chemical resistance to strong acids, they
disintegrate. Regarding the effect of alkalinity, feathers can withstand moderate alkalinity,
but they dissolve under strong alkalinity [23].

This study intends to lower both the environmental effect and the cost of mortar by
partially substituting natural sand with the sand obtained from chicken feathers, which is
commonly accessible as a waste product in the poultry industry.

First, the chicken feathers were cleaned in water to eliminate waste. The chicken
feathers were then dried at room temperature for 24 h before being roasted in an electric
oven at 50 ◦C for 4 h. Finally, the chicken feathers were crushed in an electric grinder.
This study aims to improve the compressive strength behavior of mortar by using chicken
feather sand (CFS) as a nontraditional, inexpensive, and sustainable sand replacement. This
will be performed by comparing the efficacy of CFS to that of natural sand. To accomplish
this viewpoint, six conventional mortar mixes were designed and cast; the first mix was the
control mix, which was meant to have a strength of 50 MPa. This research examines the
performance of modified mortars that employ CFS as a partial fine aggregate replacement
at rates of 5%, 10%, 15%, 20%, and 25%. A consistency test was used to control fresh
mortar qualities, while water absorption, unit weight, compressive strength after 7 and 28
days, and flexural strength tests were used to control hardened mortar properties. Finally,
microstructural analyses were performed to confirm and validate earlier test results.

2. Research Significance

This study suggests that sand derived from recycled chicken feather waste has the
potential to be used as a natural, low-cost, and long-lasting partial sand replacement in
green mortar while lowering weight. The use of this waste can contribute to a reduction of
air pollution, which is hazardous to the environment. Based on the importance of the study
in the current work, the following conclusions may be drawn:

• The significance of this research lies in the analysis of chicken feather waste, which
has never been thoroughly investigated.

• Use of CFS as a partial replacement for natural sand in the production of eco-friendly
mortar (GM).

• Further research is being conducted on the use of CFS as a partial replacement for
sand in the eco-friendly mortar industry.

• Eco-friendly mortar production with varying levels of CFS achieved a compressive
strength of 57.8 MPa after 28 days.

• Exploring the impact of CFS on the microstructure of eco-friendly mortar (GM), as
well as its new and mechanical properties.
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3. Experimental Program
3.1. Materials Used and Their Properties

The following materials were used in this research:

• Cement: All mortar combinations were made using standard Portland cement CEM I
42.5 (Asyut cement), which complies with ECP 203.

• Fine aggregate: Local sand was used as the fine aggregate. The sand used is of medium
quality. Figure 1 depicts the grain size distribution for CFS, natural sand, and the fine
aggregate used in this experiment. The fine aggregate utilized in this experiment was
natural siliceous sand, a clean and rounded fine aggregate with a size of 0.5 mm, a
specific gravity of 2.66, a unit weight of 1680 kg/m3, and a fineness modulus of 2.75.

• Water: Potable water was used.
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Figure 1. Passing percentage of aggregates utilized (natural and CF sand).

3.2. Chicken Feather Sand
Proportion of Chicken Feather Sand

For this investigation, one form of CFS was proposed. To increase the strength of the
mortar mixes, CFS was added. The discarded chicken feathers were provided by poultry
farms. The combustion of such waste can contaminate the air and endanger the ecosystem.
Before casting cement with CFS as a sand replacement, the feather surface must be cleansed
to remove dirt and other unwanted particles. To remove blood, discarded feathers were
taken in bags to the laboratory and washed many times with water. The clean feathers
were then spread out on sheets to dry for five days in the sun, as shown in Figure 2, and
they were not chemically treated. An electric oven was then used to roast the samples at
a temperature of 50 ◦C for four hr. before being crushed in a commercial electric grinder.
Table 1 lists the physical and mechanical characteristics of chicken feathers, and Figure 2
depicts the steps for chicken feather sand preparation.

Figure 3A depicts a photograph of a chicken feather, and Figure 3B shows sand (CFS)
made from chicken feathers. More than 90% of the protein in chicken feathers is a fibrous
and insoluble structural protein. The chicken feather has good resiliency because it has
cross-section gaps. Saving money, helping to build a more sustainable environment, and
increasing the sand market are all benefits of using chicken feathers. Table 2 shows the
elemental composition of a chicken feather (CF).
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Table 1. Physical properties of the chicken feathers (CFs).
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Figure 3. (A) Photograph of a chicken feather showing rachises and barbs. (B) SEM image of chicken
feather sand [24,25].

Table 2. Elemental composition of a chicken feather (CF).

Elements K Mg Ca Na P S Fe Mn Zn Cu

CFP (g 100 g−1) 12.52 5.31 6.58 7.96 2.16 0.04 0.95 0.62 0.77 0.22
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4. Mix Design Proportions

Table 3 shows the details of the mixing proportions for mortar with grade 50 MPs
(M 50). To ensure a consistent mixing technique for the specified ratio, physical parameters
of the components, such as specific gravity, water absorption, and moisture content, were
taken into consideration throughout the design mix process. The different percentages of
CFS replacement were determined based on the literature. The manual method was used
to design the mortar mix. The fine aggregate is substituted with CFS in various amounts,
such as 0%, 5%, 10%, 15%, 20%, and 25% natural sand. According to a previous study,
aggregate replacement rates of 5%, 10%, and 15% produced the best results in terms of
strength. To ensure homogeneity, the cement, CFS, and aggregates were mixed dry, and
water was gradually added. The cubes and prisms were cast in molds and allowed to cure
for 7 and 28 days for cubes and 28 days for prisms at room temperature before being tested.

Table 3. Mix design proportion (kg/m3).

Sample Cement Sand CFS Water

C-0.0% 528.0 1584.0 0 211.20
CFS-5% 528.0 501.6 26.4 211.20

CFS-10% 528.0 475.2 52.8 211.20
CFS-15% 528.0 448.8 79.2 211.20
CFS-20% 528.0 422.4 105.6 211.20
CFS-25% 528.0 396.0 132.0 211.20

5. Testing Procedure

Six different cement mortars with varying CFS replacement ratios were designed and
prepared following BS EN 196-1 [26] to measure and compare the physical and mechanical
properties of cement mortar.

Eighteen tests were conducted to determine the consistency of the fresh mortars.
Thirty-six cube specimens with dimensions of 70 × 70 × 70 mm were prepared and cured
to conduct compression tests after 7 and 28 days, respectively, as shown in Figure 4, while
flexural strength tests were conducted using eighteen prismatic specimens with dimensions
of 40 × 40 × 160 mm and tested using a three-point testing device at a curing age of
28 days, as shown in Figure 4. All tests were carried out in accordance with the BS EN
196-1 standard [26].
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The strength of the mortar can be dramatically affected when natural sand is substi-
tuted with CFS. As a result, it is important to determine if the mortar structure and its



Buildings 2023, 13, 421 6 of 14

components have unraveled or remain solid. Microstructural characteristics for the control
and replacement specimens were obtained using a scanning electron microscope (SEM) at
a high magnification power, as shown in Figure 5.
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6. Test Results and Discussions

The physical and mechanical properties of the CFS mortar were examined. The
results of the experiment are summarized in Table 4, which includes consistency, unit
weight, water absorption, compressive strengths at 7 and 28 days, flexural strength, and
microstructural analyses.

Table 4. Properties of the CFS mortar.

Sample Consistency
(mm)

Unit
Weight

t/m3

Water
Absorption

(%)

Fcu
at

7 Days
(MPa)

Fcu
at

28 Days
(MPa)

Flexural
Strength

(MPa)

C-0.0% 152 2.53 7.2 36.7 51.0 9.2

CFS-5% 147 2.50 8.2 39.6 55.1 10.1

CFS-10% 141 2.46 9.4 41.6 57.8 10.7

CFS-15% 134 2.41 10.6 37.9 52.1 9.5

CFS-20% 126 2.35 11.8 33.3 46.1 8.3

CFS-25% 117 2.28 12.9 28.2 38.6 6.9

6.1. Fresh Properties

In this study, mixtures were prepared with a constant water-to-cement ratio (W/C)
of 0.4 and replacement ratios of CFS of 5%, 10%, 15%, 20%, and 25%. Furthermore, when
compared to the control sample, a higher replacement of CFS resulted in a lower workability
for the same quantity of water, as represented in the consistency value of the blended cement
paste, as shown in Figure 6. These findings are comparable with those of Abishek et al. [27].
The CFS-5%, CFS-10%, CFS-15%, CFS-20% and CFS-25% mixtures had approximately
3.29%, 7.24%, 11.48%, 17.11%, and 23.03% lower consistencies than the control mixture,
respectively. The reduced water requirement of CFS is due to the substance’s ability
to absorb water when compared to natural sand, as well as the microstructure of the
substituted mixtures [16,28]. Because a high replacement ratio requires the use of more
water to achieve a specific consistency, more water is required to maintain that consistency.
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On the other hand, low replacement ratios are ineffective at this time. This conclusion was
consistent with the findings of other studies, see Figure 6 [29].
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Figure 6. Consistency values for all mixtures.

For a high CFS replacement, this is attributed to the fact that some portion of the
mixing water is absorbed by CFS. As a result, a greater amount of super-plasterer was nec-
essary to compensate for the reduction in water volume to enhance workability with high
replacement ratios greater than 20%. Many investigations have confirmed that replacing
CFS in mixtures necessitates the use of more super-plasterers to maintain workability [30].

6.2. Hardened Properties

Figure 7 shows the compressive and flexural tests, and the relationships between the
compressive strength, unit weight, and replacement percentage are shown in Figure 8.
The unit weight of all mixes, C-0.0%, CFS-5%, CFS-10%, CFS-15%, CFS-20% and CFS-25%,
ranged from 2.53 to 2.28 t/m3. The conclusion is that mortars combined with lightweight
aggregates have lower masses as a result of an increased void content. Increasing the
replacement proportions resulted in a 10% reduction in the mortar unit weight for the CFS
mixes. The results are consistent with [31]. According to Figure 8, the relationship between
the compressive strength and unit weight is proportional, which means that the greater
the compressive strength is, the lower the weight at the replacement ratio CFS-10% is, and
the lower the compressive strength is, the lower the weight after the replacement ratio
CFS-10% is [32].
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Figure 8. The relationship between compressive strength and unit weight depends on the
replacement percentage.

To investigate the dimensional stability of bio-composites, all samples were immersed
in water at 25 ◦C for 48 h. Figure 9 shows how much water was absorbed after 48 h of
immersion in water. Because of CFS’s great absorption capacity, very high results were
expected. After 48 h of immersion, all the samples acquired water in the range of 13.90%
for CFS-5% to 79.17% for CFS-25%. It can be observed that the water absorption increases
as the CFS replacement increases. The water absorption was the highest for the CFS-25%
mixture. These findings are consistent with those reported by Ouahiba Mrajji et al. [33,34],
who found that adding CFS to mortar mixes improved water absorption and reduced
compressive strength [35–37].
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Figure 9. The relationship between compressive strength and water absorption (%) depends on the
replacement percentage.

Figure 10 depicts the compressive strength values of CFS mixes depending on the
amount of CFS replacement. The CFS-10% combination attained the ultimate compressive
strength. The increase in compressive strength at 7 days was found to be highly apparent
in comparison to the increase in compressive strength at 28 days, which ranged from 2.16%
to 13. 33%. The usage of CFS from 5% to 15% of a fine aggregate contributed significantly
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to the compressive strength values. As a result, the inclusion of 10% CFS as the optimal
replacement ratio resulted in a 41.58 MPa compressive strength at 7 days and 57.8 MPa
compressive strength at 28 days [16,38,39].
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Figure 10. The values of compressive strength at 7 and 28 days for all mixtures.

Figure 11 shows the flexural strengths of mixtures with and without replacement, as
well as the flexural/compressive (F/C) ratios. According to the findings of this study, using
CFS in specific amounts greatly enhances flexural strength. Mechanical characteristics
were reduced with a 15% CFS replacement. The compressive strength increases with a
stronger matrix, and high flexural strengths can be achieved [40]. It is assumed that at a
certain level of CFS (10% by weight), the weak bonding capability of CFS diminishes the
adhesive strength with paste, resulting in low mechanical properties, as documented in
the literature [41,42]. The F/C ratios ranged between 18.51% for the CFS-10% mixture and
17.88% for the CFS-25% mixture. The CFS replacement in mortar improved mechanical
properties such as the compressive strength, flexural strength, and other properties, and
this result is in agreement with the reference [16,43]. Figures 12 and 13 show the standard
deviations for compressive and flexural strengths.
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Figure 11. The relationships between flexural strength and flexural/compressive strength (%) de-
pending on the replacement percentage.
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6.3. Surface Morphology

The micrographs of the CFS mortar are shown in Figure 14. According to Figure 14,
the structure of the CFS particles varied. The surface texture and shape of the mortar varied
due to the replacement ratios. The densification of the particles is influenced by grade
50 MPa mortar, as shown in the microstructure (Figure 14a–d). The surfaces of the CFS-5%,
CFS-10%, and CFS-15% mixtures are rigid and nonporous, but the surfaces of the CFS-20%
and CFS-25% mixtures are porous. This rigid surface may contribute to a better strength
(Figure 14b–d), while the porous surface provides a lower strength (Figure 14e,f) due to the
dispersion structure [44,45]. The surfaces of the CFS-20% and CFS-25% mixtures are rigid,
whereas the CFS-5%, CFS-10%, and CFS-15% mixtures have smooth surfaces. The high
replacement of fine aggregates indicates a non-uniform dispersion of the fillers within the
matrix [46,47]. The appearance of clusters is a clear indicator that the CFS agglomerated
in the mortar at large replacement ratios (20% and 25%). In contrast, the surfaces of the
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CFS-5%, CFS-10%, and CFS-15% mixtures have fewer clusters. These findings suggest that
the interfacial bonding is stronger between the CFS and mortar in low replacements [48–50].
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6.4. Comparison between Natural Sand Mortar and Chicken Feather Sand Mortar Cost

A cost comparison was performed, and it was revealed that replacing 15% of the sand
costs the least and has the greatest impact on the project’s cost. However, according to this
research, the optimal replacement is 10%, which reduces the cost of 1 m3 of mortar by 3.0%
and simultaneously increases the strength, which is in accordance with references [1,51,52].

It must be noted that the comparison of the cost did not include the cost of admixtures,
mixing, and casting of the mixes, which can be assumed to have similar costs for the studied
types of mortar (see Figure 15).
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7. Conclusions

The physical and mechanical characteristics of the modified mortar were investi-
gated. Based on the current experimental work’s analysis, the following conclusions may
be drawn:

1. A high replacement ratio requires the use of more water to obtain a particular consis-
tency, and more water is required to maintain that consistency.

2. The compressive strength and unit weight relationship is proportional, which means
that the greater the compressive strength, the lower the weight at the replacement
ratio CFS-10%, and the lower the compressive strength, the lower the weight after the
replacement ratio CFS-10%.

3. As water absorption increases, CFS replacement also increases; water absorption was
higher in the CFS-25% mixture.

4. The replacement of CFS-10% as the optimal replacement ratio resulted in compressive
strength values of 41.58 MPa at 7 days and 57.8 MPa at 28 days.

5. As may be observed from the findings of this research, the usage of CFS significantly
improves the flexural strength by replacement ratios of 5%, 10%, and 15% of CFS;
however, mechanical properties were lowered in the study after replacement ratios of
20%.

6. The surfaces of the CFS-5%, CFS-10%, and CFS-15% mixtures were rigid and non-
porous, but the surfaces of the CFS-20% and CFS-25% mixtures were porous. This
rigid surface may contribute to more strength, but the porous surface has less strength
due to the dispersive structure.

7. Regarding the costs, the optimum replacement is 10%, which decreases the cost of
1 m3 of mortar by 3.0% while increasing its strength.
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