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Ensemble learning based 
compressive strength prediction 
of concrete structures 
through real‑time non‑destructive 
testing
Harish Chandra Arora 1,2, Bharat Bhushan 2, Aman Kumar 1,2*, Prashant Kumar 1,2, 
Marijana Hadzima‑Nyarko 3,4, Dorin Radu 4, Christiana Emilia Cazacu 4 & Nishant Raj Kapoor 1

This study conducts an extensive comparative analysis of computational intelligence approaches 
aimed at predicting the compressive strength (CS) of concrete, utilizing two non-destructive testing 
(NDT) methods: the rebound hammer (RH) and the ultrasonic pulse velocity (UPV) test. In the 
ensemble learning approach, the six most popular algorithms (Adaboost, CatBoost, gradient boosting 
tree (GBT), random forest (RF), stacking, and extreme gradient boosting (XGB)) have been used to 
develop the prediction models of CS of concrete based on NDT. The ML models have been developed 
using a total of 721 samples, of which 111 were cast in the laboratory, 134 were obtained from in-situ 
testing, and the other samples were gathered from the literature. Among the three categories of 
analytical models—RH models, UPV models, and combined RH and UPV models; seven, ten, and 
thirteen models have been used respectively. AdaBoost, CatBoost, GBT, RF, Stacking, and XGB models 
have been used to improve the accuracy and dependability of the analytical models. The RH-M5, 
UPV-M6, and C-M6 (combined UPV and RH model) models were found with highest performance 
level amongst all the analytical models. The MAPE value of XGB was observed to be 84.37%, 83.24%, 
77.33%, 59.46%, and 81.08% lower than AdaBoost, CatBoost, GBT, RF, and stacking, respectively. The 
performance of XGB model has been found best than other soft computing techniques and existing 
traditional predictive models.

Concrete is an indispensable construction material and popular due its durability, cost-effectiveness, fire 
resistance, and expedited construction properties. Concrete is made by combining several components, such 
as cement, water, fine particles, and coarse aggregates, in precise ratios that produce the desired compressive 
strength (CS). Many studies have focused on estimating the properties of hardened concrete. CS is one of the 
fundamental qualities of concrete that designers are interested in, and relevant information can be gathered 
through laboratory testing. Evaluating the CS of concrete can estimate the residual capacity of the structure1.

Concrete specimens (cubes and cylinders) must be loaded to failure in order to directly determine the CS 
of concrete. Therefore, samples must be analysed in laboratories to determine the CS of the concrete. However, 
this is time-consuming and very costly process. To determine the in-situ CS of structural members, concrete 
cores can be extracted and this method is called destructive testing. This destructive method is also costly and 
needs the drilling of concrete cores, transportation, and dressing of concrete cores as per the codal requirement 
to determine the CS of concrete. To overcome this issue, in 1948 Swiss civil engineer and bridge builder Ernst 
O. Schmidt invented a rebound hammer (RH) to determine the CS of concrete without damaging the structural 
concrete2. Determining the properties of concrete without damaging the concrete is called non-destructive 
testing (NDT) or non-destructive evaluation (NDE). A brief description of NDT is available in Section "Non-
destructive testing". The commonly used NDT techniques to evaluate the CS of concrete are RH and ultrasonic 
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pulse velocity (UPV)3. UPV is an NDT method used to evaluate the elastic properties and integrity of materials, 
particularly concrete and rock. It involves the amount of the time it takes for an ultrasonic pulse to travel through 
a material and be reflected back by an internal defect or the opposite surface. The velocity of the pulse can then 
be calculated and used to determine the quality of the material. The UPV technique serves as a prevalent method 
for detecting damages or assessing deterioration in civil engineering infrastructures.

Reliable and accurate models are needed to evaluate the CS of concrete, it reduces time as well as cost. Various 
mathematical models are accessible in the previous studies to calculate the CS of concrete with RH and UPV 
values. The accuracy of mathematical models is very less due to the complexity of the concrete and models are 
based on a limited dataset. Machine learning (ML) algorithms are good to estimate the CS of concrete and are 
used by numerous researchers in the field of concrete technology. There are very few studies in the literature 
that used ML models (step-by-step regression (SBSR), an adaptive neuro-fuzzy inference system (ANFIS), gene 
expression programming (GEP), high correlated variables creator machine (HCVCM)-SBSR, HCVCM-GEP, and 
HCVCM-ANFIS, artificial neural networks (ANN), support vector machines (SVM), Linear regression (LR), 
lazy-learning algorithms (LLA), and tree-based learning algorithms (TBL)) to predict CS using RH and UPV 
tests. Some of the studies are explained below and also described in Table 1.

Shishegaran et al.4 used SBSR, ANFIS, GEP, and other three hybrid algorithms (HCVCM-SBSR, HCVCM-
GEP, and HCVCM-ANFIS) to estimate the CS using NDTs. The collected dataset contains only 516 experimental 
values of RH and UPV. The findings of the analyzed results show that HCVCM-ANFIS outperforms all other ML 
models to estimate the CS of concrete. HCVCM increases ANFIS accuracy by 5%, 10%, 3%, 20% and 7% in coef-
ficient of determination, RMSE, NMSE, MAPE, and maximum negative error, respectively. Asteris and Mokos5 
predicted the CS of concrete obtained from RH and UPV testing using ANN. There were only 209 experimental 
datasets of RH and UPV values. A single and double hidden layer was used to train the ANN model. The single 
hidden layer with twenty-five neurons performs well when compared to the double hidden layer. The R-value of 
the selected ANN was 0.9891 with a RMSE value of 1.4678 MPa. Shih et al.6 estimated the CS of concrete with 
NDT by utilizing SVM. To develop and validate the SVM model, information was gathered from 95-cylinder 
concrete samples. In comparison to statistical regression methods, the SVM model has a greater level of precision. 
LR, LLA, and TBL were utilized by Erdal et al.7 to estimate the concrete CS using NDT results. The performance 
of the TBL algorithm was greater than LR and LLA.

The use of ML algorithms in the NDT of concrete structures can improve the accuracy and efficiency of the 
testing process. ML algorithms can be used to analyse the data collected by NDT methods such as ultrasonic 
testing, infrared thermography, and ground penetrating radar, to identify and classify defects in the concrete. 
This can help to reduce the need for costly and time-consuming manual inspections, and can also improve the 
ability to detect defects that might be missed by traditional NDT methods.

The distinction of the developed ML models arises from their reliance on the most comprehensive dataset 
among comparable studies centered on predicting CS through NDT data, as emphasized in Table 1.

Real-time NDT (RTNDT) is a promising alternative that allows for the measurement of material properties 
without causing any damage. RTNDT techniques use various sensors to collect data about the material’s response 
to external loads or other stimuli and can provide information about the material’s mechanical properties in real 
time. This study aims to evolve a model for estimating CS based on RTNDT data. The main contribution of this 
study is the use of an ensemble learning (EL) approach, which is a ML technique that combines the predictions 
of multiple models to produce a more accurate and robust prediction.

By developing an EL approach for CS prediction based on RTNDT data, this study will provide a novel solu-
tion for NDE of materials and structures that is faster, cheaper, and safer than traditional destructive testing. The 
results of this study will be useful for engineers, researchers, and practitioners who are interested in the develop-
ment of RTNDT techniques for material evaluation. The primary contribution of this research includes: (i) to 
develop accurate prediction models for structural health monitoring of concrete structures, and (ii) to identify 
the impact of input parameters on the CS of concrete. Notably, the developed ML models exhibit performance 
metrics that outperform existing models, signifying superior predictive accuracy and efficacy in estimating CS 
from NDT data.

Table 1.   Summary of previously established ML models to determine the CS using RH and UPV values.

S. No References Input parameters Dataset ML methods Range of CS (MPa)
Performance of ML 
models

1 Shishegaran et al.4 RH, UPV 516 SBSR, GEP, HCVCM-ANFIS 11.11 to 55.82 R2 = 0.8619 (HCVCM-
ANFIS)

2 Asteris and Mokos5 RH, UPV 209 ANN 12.16 to 52.17 R2 = 0.9783

3 Shih et al.6 RH, UPV 95 SVM – MAPE = 6.77%

4 Erdal et al.7 RH, UPV 100 LR, LLA, TBL – R2 = 0.9065 (TBL)

5 Asteris et al.8 RH, UPV 629 ANN, MPMR, GPR, MARS, 
RVM, GP 12.16 to 63.75 R2 = 0.9595 (ANN)
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Non‑destructive testing
NDT refers to a range of analysis techniques used in engineering and/or science to assess the properties, integrity, 
and characteristics of materials, components, or structures without causing any damage or alteration to their 
physical properties. NDT methods are used to examine and evaluate flaws, defects, or anomalies in a non-invasive 
manner, ensuring the reliability, safety, and quality of the examined materials or structures9. The commonly used 
NDT testing to estimate the CS of concrete is described below:

Rebound hammer
The RH test is one of the most widely used NDT technique for determining the CS of concrete which offers a 
practical and reasonably priced method to determine the concrete CS. The RH test standards are provided by 
various nations like India, USA, China, UK, Russia, European Union, Switzerland, and Japan, as shown in Fig. 1.

The concept behind the hardness test is that an elastic mass’s rebound is influenced by how hard the surface 
is that it impacts. The strength of concrete is inversely correlated with the amount of energy it can absorb. The 
method of testing starts with carefully choosing and preparing the concrete surface that will be tested. Abrasive 
stones should be used to smooth up the test surface after the surface has been chosen. To impart a specific amount 
of energy, the hammer is then driven on the test surface.

Let the plunger make a perpendicular stroke to the surface. In the old RH, the inclination angle of the hammer 
has an impact on the results, but it is unimportant in the latest RH instruments. The rebound number should be 
recorded after the impact10,11. A minimum of ten readings must be taken in each area being analysed. Although 
there is no unique relationship between concrete hardness and strength. However, according to IS 13311 Part 212, 
the rebound number is affected by factors such as cement type, aggregate type, carbonation of concrete, surface 
condition, concrete age, concrete moisture content, curing time, etc.

Ultrasonic pulse velocity (UPV)
This method involves measuring the velocity of an ultrasonic wave propagating through a specimen to evaluate 
its strength and quality characteristics. A complicated system of stress waves is created as a result, including 
longitudinal (compressional), shear (transverse), and surface (Rayleigh) waves. The longitudinal waves, which 
move the quickest, are detected by the receiving transducer. The velocity of the ultrasonic wave can be used as a 
metric to grade the quality of the concrete, with higher velocities indicating better quality and homogeneity, and 
lower velocities indicating non-uniformity or the presence of defects such as cracks or voids.

In order to conduct this test, an ultrasonic wave pulse is introduced into the material under examination, and 
the elapsed time for the pulse to traverse the material is meticulously recorded. Subsequently, the pulse velocity 
is computed by dividing the distance, the pulse travelled within the material by the time it took for this traversal. 
Notably, the velocity of the ultrasonic wave is influenced by the density and elastic modulus of the material. There 
are various standard methods used globally to conduct the UPV test, as shown in Fig. 1. UPV testing methods can 
be categorized into three groups: direct testing, semi-direct testing, and indirect testing, as presented in Fig. 2.

IS-13311 (Part 2):1992

ASTM C805

JGJ/T 23-2011

EN 12504-2:2021

EN 13791:2007

BS 1881-202

ГОСТ 22690-2015 

ISO/DIS 8045 40.98

JIS A 1155:2012

IS-13311 (Part 1):1992

ASTM C597

CECS 21-2000

EN 12504-4:2021

ГОСТ 17624-2012

ISO 1920-7:2004

BS 1881-203

Country Rebound Hammer UPV

Figure 1.   Standards of RH and UPV testing.
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According to IS 13311 Part 113, factors that can influence the pulse velocity includes the surface conditions 
and moisture present in the concrete, the shape, and size of the concrete member, the temperature of the con-
crete, the presence of stress, the effect of reinforcing bars, etc. It is important to consider these factors to obtain 
accurate results. The pulse velocity (V) is given by:

where, V, L, and T are the pulse velocity, length, and effective time, respectively.
The velocity criterion for concrete quality grading according to IS 13311 Part 113 is shown in Table 2, and 

concrete quality classification based on the RH and UPV values is shown in Table 314.

Experimental methodology
Materials
OPC 43 grade cement was used in the present research work. The physical properties of Ordinary Portland 
Cement such as consistency, fineness, specific gravity, and CS after 672 ± 4 h have values of 30%, 310 m2/kg, 3.14, 
and 47.31 MPa, respectively. The coarse aggregates used in this study, measuring 20 mm and 10 mm in size, were 
naturally crushed and have corresponding fineness modulus of 2.25 and specific gravity of 2.71. Fine aggregates 
were natural with specific and fineness modulus values of 2.69 and 2.78 (Zone III), respectively. The design mix 
was prepared according to IS 10262: 201615. Test specimens were batched onsite using different concrete mix 
designs with cement, water, coarse aggregate, fine aggregate, admixture, and w/c ratio, with nominal 28 days CS 
of 22 MPa to 44 MPa and concrete with slump flow of more than 100 mm. The total number of cast samples was 
111, and each cube sample measured 150 mm × 150 mm × 150 mm. Figure 3 depicts the complete procedure of 
the samples from the casting phase to the testing phase.

CS using RH
The CS of concrete can be quickly and conveniently determined using the NDT method known as the "RH test". 
The RH, often referred to as a Schmidt hammer, is composed of a mass that is moved along a plunger inside a 
tubular casing and is controlled by a spring. Before testing, all samples were taken out of the curing tank and 
maintained in the lab environment for roughly 24 h. Then 15 mm small circles were marked on the two faces 
of the concrete cube. The arrangement of the circle with the centre-to-centre spacing is presented in Fig. 4a. 
The total number of marking were twenty-five as shown in Fig. 4b. The concrete cube specimens were placed in 
a compression testing machine and subjected to a constant load of approximately 7 N/mm2 (based on impact 
energy of the hammer) (Fig. 4c). The rebound number was measured, and the CS is calculated according to IS 

(1)V =
L

T

Figure 2.   Type of UPV testing (a) direct test, (b) semi-direct test, and (c) indirect test.

Table 2.   Velocity criterion for concrete quality grading.

Concrete quality Excellent Good Medium Doubtful

UPV value (km/s)  > 4.5 3.5 to 4.5 3.0 to 3.5  < 3.0

Table 3.   Concrete quality classification based on RH and UPV.

RH 46 35 27 17

UPV value (km/s) 5.0 4.5 4.0 3.5

Concrete quality Very good Good Fair Poor
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516:195916. In the RH test, 10 to 12 rebound number responses from each test location were measured on two 
faces of the cube specimen (Fig. 4d).

The average rebound value of each test region is derived using an algorithmic average after the maximum set 
and the minimum set of results17 have been removed.

where, Rm and RNi are the average value of each test area and the measured value of each impact point, 
respectively.

Density using UPV
The working principle and related details of UPV are already mentioned in the subsection "Ultrasonic pulse 
velocity (UPV)". In the UPV test, marking has been done on two faces of the concrete cube. The diameter of 
the probe is 50 mm and on each face, five markings were made as shown in Fig. 5a and b. On an average only 
two readings were taken from the selected two faces as shown in Fig. 5d. The 54 kHz probes were used and the 
method of testing is a direct method or direct testing as shown in Fig. 5c.

The average UPV value can be obtained by using below expression:

where, UPVm and UPVi are the average value of each test area and the measured value of each point, sequentially.

CS using UTM
After the RH and UPV testing, the sample had been tested under the universal testing machine (UTM) according 
to IS 516: 195916. Load should be applied gradually and continuously without shock. Gradually increase the load 
until the cube either reaches its peak capacity or shows signs of cracking. The maximum load at which the cube 
fails should be recorded along with the type of failure (crushing, splitting, etc.) as shown in Fig. 6. IS 516 code 
provides guidelines for the testing of concrete cubes and the procedure is followed to obtain accurate results.

(2)Rm =

10
∑

i=1

RNi

10

(3)UPVm =

2
∑

i=1

UPVi

2

150 mm

1
5

0
m

m

150 mm

1
5

0
m

m

150 mm

1
5

0
m

m

1 2

3

4 5

1

2

(b)(a)

(c)

(d)

Figure 5.   Concrete cubes (a) Marking of 50 mm circle for UPV test (b) Assigning number to each circle (c) 
testing of samples with UPV instrument, and (d) Impression of UPV test.
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Collected database
To collect the RH and UPV data of concrete cubes, a thorough research of the literature was conducted. From 
the published studies, 476 datasets had been gathered5,18–21. From in-situ NDT, 134 datasets had been obtained. 
Furthermore, a total of 111 concrete cubes were cast and subsequently subjected to laboratory testing employing 
methods such as RH, UPV, and UTM. In the end, 721 datasets were chosen to construct the ML models. Figure 7 
shows the full approach used to accomplish the goal of this study. Table 4 presents the statistical characteristics 
(minimum, maximum, mean, standard deviation (SD) and kurtosis (Ku)) of the gathered, in-situ, laboratory 
tests, and the merged dataset.

A probability histogram is a graph that lists all possible outcomes along the x-axis and the likelihood of each 
outcome on the y-axis. The probability distribution is depicted graphically in Fig. 8.

Processing of data
Data processing is an important step in ML algorithms. Data standardization is the process of transforming 
data into a common format or scale so that it can be easily compared and combined with other data. This is par-
ticularly important when working with data from different sources, as each source may have its format or scale. 
In this work, “Min–Max Scaling” has been used to normalize the input and output datasets. Standardization/
normalization of the dataset is important because it allows for more accurate and fair comparisons between data 
and can improve the performance of ML algorithms22,23.

Figure 6.   Testing of the specimen under UTM (a) setting of the specimen under UTM, (b) application of load, 
and (c) failure of the specimen.
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Prediction models
To predict the CS using NDT methods; mathematical and ML models have been applied. The mathematical mod-
els have been divided into three categories: (a) prediction models based on RH, (b) prediction models based on 
UPV value, and (c) prediction models based on combined RH and UPV values. Ensemble-based ML algorithms 
namely AdaBoost, CatBoost, GBT, RF, stacking, and XGB have been applied to develop the CS prediction models. 
Detailed information on the mathematical and ML models is available in subsequent sections.

Mathematical models
In this section, the details of analytical models based on RH, UPV, and combined RH and UPV are given in 
Tables 5, 6 and 7, sequentially with the year of publication. These models are the most widely acknowledged 
empirical connections for calculating the CS of concrete using NDT techniques that can be found in the literature. 
These equations rely on UPV, RH, or a combination of both for measurements, but they tend to demonstrate 
considerable deviation, leading to predicted results that significantly differ from the actual values.

The CS of concrete has been adjusted using a tiny correction in the analytical models (UPV-M8, CM-10, and 
CM-13). In the UPV-M8, C-M10, and C-M13 models, the correction factor in the existing model is divided by 
10000, 10, and 10 values, respectively.

ML models
EL combines diverse models: bagging (bootstrap aggregating) and boosting. Bagging trains varied model 
instances on different data subsets, combining predictions through voting or averaging. Boosting trains sequential 
weak models, each correcting the previous one’s errors, combining predictions with weighted emphasis. Mod-
els like random forest (RF), gradient boosting trees (GBT), AdaBoost, and XGBoost (XGB) are prominent for 
their superior performance and lower overfitting risks. This study applied six EL models to enhance accuracy 
of the existing model, showcasing EL’s capability to improve predictive results. The overview of the ML models 
is given in Table 8.

Model validation
There are several metrics commonly used for model validation in regression problems, such as correlation 
coefficient (R), root mean square error (RMSE), mean absolute percentage error (MAPE), and mean absolute 
error (MAE). The R-value closes to one shows the better fit of the model and lower RMSE (approaches to zero) 
indicates a better fit. Nash–Sutcliffe (NS) efficiency index with a value equal to one shows a good fit between the 
experimental and predicted values. A higher a20-index value indicates a better fit. It is always preferable to use 
multiple metrics to evaluate the performance of the individual model54–63.

(4)R =

∑

N

i=1
(ri − r)(si − s)

√

∑

N

i=1
(ri − r)2

∑

N

i=1
(si − s)2

(5)MAE =
1

N

N
∑

i=1

|ri − si|

Table 4.   Statistical parameters of all the datasets used to develop ML models.

Variable Symbol Units Min Max Mean SD Ku

From literature

 Rebound number RN – 14 55.5 28.68 7.91 3.70

 Ultrasonic pulse velocity UPV km/sec 3.39 5.22 4.43 0.34 3.06

 Compressive strength CS MPa 5.20 59.33 27.32 10.43 3.16

In-situ testing

 Rebound number RN – 25.30 52.80 41.36 6.08 2.72

 Ultrasonic pulse velocity UPV km/sec 1.83 5.14 3.66 0.64 2.55

 Compressive strength CS MPa 17.89 55.60 30.66 11.81 2.41

Laboratory testing

 Rebound number RN – 25.40 42.20 33.32 3.47 3.26

 Ultrasonic pulse velocity UPV km/sec 3.21 4.56 4.14 0.15 4.71

 Compressive strength CS MPa 22.07 44 33.48 4.70 2.67

Whole dataset

 Rebound number RN – 14 55.50 31.75 8.58 2.90

 Ultrasonic pulse velocity UPV km/sec 1.8 5.22 4.24 0.49 3.97

 Compressive strength CS MPa 5.2 59.33 30.29 9.72 2.53
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Figure 8.   Histogram probabilities plot (a) data from the literature, (b) in-situ data, (c) laboratory data, and (d) 
combined all data.
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where, r, s, r , and s are the experimental values, predicted values, mean of experimental values, and mean of 
the predicted values, respectively. N represents the number of datasets, and m20 is the number of values obtained 
from measured values divided by predicted value and lies in the range of 0.8 to 1.2.

(8)NS = 1−

∑

N

i=1
(ri − si)

2

∑

N

i=1
(ri − s)2

(9)a20− index =
m20

N

Table 5.   List of analytical models based on RH.

S. No References Year Model name Equation

1 Logothetis24 1978 RH-M1 0.0981
(

−9.40+ 0.52RN + 0.02RN2
)

2 Trezos et al.25 1993 RH-M2 0.0147RN2 + 1.058RN − 14.796

3 Kheder26 1999 RH-M3 0.4030RN1.2083

4 Qasrawi27 2000 RH-M4 1.353RN − 17.393

5 Nash’t et al.28 2005 RH-M5 0.788RN1.03

6 Erdal29 2009 RH-M6 −0.0177RN2 + 2.0481RN − 19.303

7 Shariati et al.30 2011 RH-M7 1.7206RN − 26.595

Table 6.   List of analytical models based on UPV.

S. No References Year Model name Equation

1 Logothetis24 1978 UPV-M1 0.0981
(

176.9− 96.467UPV + 13.906UPV2
)

2 Trezos et al.25 1993 UPV-M2 28.9UPV2 − 221.6UPV + 440.1

3 Kheder26 1999 UPV-M3 1.2× 10
−5(1000UPV)1.7447

4 Qasrawi27 2000 UPV-M4 36.73UPV − 129.077

5 Turgut31 2004 UPV-M5 1.14e0.77UPV

6 Nash’t et al.28 2005 UPV-M6 1.19e0.715UPV

7 Trtnik et al.32 2009 UPV-M7 0.085e1.2882UPV

8 Erdal29 2009 UPV-M8 −16.777UPV2 − 167.29UPV − 377.18

9 Shariati et al.30 2011 UPV-M9 15.533UPV − 34.58

10 Al-Numan et al.33 2015 UPV-M10 11.804e0.2601UPV

Table 7.   List of analytical models based on combined RH and UPV.

S. No References Year Model name Equation

1 Logothetis24 1978 C-M1 0.0981e1.78ln(UPV) + 0.85ln(RN)− 0.02

2 Bellander34 1979 C-M2 −25.568+ 0.000635RN3 + 8.397UPV

3 Tanigawa et al.35 1984 C-M3 −0.544+ 0.745RN + 0.951UPV

4 Arioglu and Manzak36 1991 C-M4 18.6e0.515UPV+0.019R
0.0981

5 Kheder26 1999 C-M5 0.0158(1000UPV)0.4254RN1.1171

6 Nash’t et al.28 2005 C-M6 0.356RN0.866e0.302UPV

7 Turgut and Kucuk37 2006 C-M7 −194+ 0.77RN + 44.8UPV

8 Dolce et al.38 2006 C-M8 8.925× 10
−11(1000UPV)2.6RN1.4

9 Erdal29 2009 C-M9 0.42RN + 13.166UPV − 40.255

10 Shariati et al.30 2011 C-M10 0.0981
(

−173.04+ 131RN + 57.96UPV + 4.07UPV2
)

11 Huang et al.39 2011 C-M11 (

1.26+ 0.00015RN2 + 0.035UPV3 + 0.8024
)2

12 Nikhil et al.40 2015 C-M12 1.6411× 10
−9(1000UPV)2.29366RN1.30768

13 Amini et al.41 2016 C-M13
(

0.10983+ 0.00157RN − 0.79315
(

UPV

10

)

− 0.00002RN2 + 1.29261
(

UPV

10

)2
)

× 10
3
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Results and discussions
Mathematical models
The mathematical models are divided into three categories namely: (i) RH models (ii) UPV models and (iii) 
combined RH and UPV models as mentioned in section "Prediction models". In RH models, the R-value of the 
RH-M2 model is the highest among all the models (RH models). But, MAE, RMSE, and MAPE values of the 
RH-M5 model are the lowest among all the RH models. On the other hand, NS and the a20-index of the RH-M5 
hold the first position. The range of error in RH-M1, RH-M2, RH-M3, RH-M4, RH-M5, RH-M6, and RH-M7 
models are  + 5.02 MPa to  + 51.94 MPa,  − 32.70 MPa to  + 13.75 MPa,  − 11.43 MPa to  + 16.96 MPa,  − 12.49 MPa 
to  + 16.48 MPa,  − 12.30 MPa to 16.05 MPa,  − 12.07 MPa to 19.74 MPa, and  − 17.87 MPa to 18.92 MPa, sequen-
tially. The values of all performance metrics is shown in Table 9 and the scatter plot of all the RH models is 
shown in Fig. 9.

Therefore, based on all the performance indices, it can be summarized that the precision of the RH-M5 model 
is good among all the RH models.

Among UPV models, the UPV-M7 model exhibits a higher R-value compared to other UPV models. However, 
the errors in the UPV-M7 model are higher as compared to the UPV-M6 model. The MAE value of the UPV-M6 
model is 20.48% lower than the UPV-M7 model. Similarly, the RMSE and MAPE value of the UPV-M6 model is 
22.71% and 15.62% lower than UPV-M7. However, the NS and a20-index of the UPV-M8 and UPV-M2 models 
are greater.

However, the overall performance of the UPV-M6 model is good. Therefore, it can be inferred that the 
UPV-M6 model outperforms other UPV models in terms of performance. A scatter plot and the values for all 
performance metrics are presented in Fig. 10 and Table 10 respectively.

The final category of analytical models incorporates a combination of RH and UPV measurements. The 
C-M6 model displays superior performance when compared to other combined models, with higher values for 
R-value, NS, and a20-index. Specifically, the R-value of the C-M6 model surpasses that of C-M1, C-M2, C-M3, 
C-M4, C-M5, C-M7, C-M8, C-M9, C-M10, C-M11, C-M12, and C-M13 by 5.99%, 6.26%, 9.30%, 7.38%, 4.01%, 
29.39%, 1.59%, 13.65%, 10.94%, 52.19%, 0.97%, and 66.12%, respectively.

Overall, the C-M6 model demonstrates superior performance in comparison to combined models as well 
as the other two categories. Figure 11 and Table 11 depict a sequential representation of the scatter plot and 
performance metric values. Additionally, the C-M6 model exhibits the lowest MAE, RMSE, and MAPE values 
among all combined models.

Table 8.   Description of ML models.

Model Description Year proposed Notable features

AdaBoost Combines weak learners iteratively by adjusting instance weights; 
enhances accuracy in regression and classification42–44 1997 Sequential training, weighted majority vote, simplicity, and effectiveness

CatBoost
Developed by Yandex in 2017, CatBoost excels in handling categorical 
variables efficiently within gradient boosting, requiring minimal hyperpa-
rameter tuning45,46

2017
Efficient handling of categorical variables, permutation-based algorithm, 
no need for one-hot encoding, faster training times, lower memory usage, 
built-in handling of missing values, automatic handling of class-imbal-
anced datasets

GBT Assembles weak prediction models (like decision trees) iteratively, opti-
mizing various loss functions; offers versatility in optimization47,48 1999

Adaptable to differentiable loss functions, various algorithmic variants 
like XGB and LightGBM, effectiveness in large-scale data, competitions, 
and handling large datasets

RF Integrates multiple decision trees through EL, minimizing overfitting by 
training on different data subsets and features49,50 2001

Utilizes randomness in data subsets and feature selection, reduced overfit-
ting, integration of bagging and boosting methods, high accuracy, and 
ease of use

Stacking
Introduced by David H. Wolpert in 1992, stacking combines predic-
tions of diverse base models using a meta-model to enhance ensemble 
performance51

1992
Meta-model integration, enhancement of overall ensemble performance, 
applications in diverse ML tasks like NLP, computer vision, and time 
series forecasting

XGB
XGB, based on gradient boosting, combines multiple weak models using 
decision trees, with features like regularization, parallel processing, and 
handling of missing values, offering effectiveness in real-world problem-
solving52,53

2016
Gradient-based iterative model creation, decision tree usage, regulariza-
tion, parallel processing, handling of missing values, and categorical 
variables

Table 9.   Results of RH models.

Model R MAE (MPa) RMSE (MPa) MAPE (%) NS a20-index SD

RH-M1 0.7962 26.0693 27.6110 90.5165 0.0298 0.0000 1.6935

RH-M2 0.7964 9.1674 12.6750 33.7092 0.7955 0.4827 18.8684

RH-M3 0.7947 5.5736 6.6975 20.0977 0.9429 0.5132 9.2628

RH-M4 0.7928 6.6096 7.8916 25.8120 0.9207 0.4313 12.4306

RH-M5 0.7931 5.1998 6.3867 19.2082 0.9481 0.6019 8.2789

RH-M6 0.7549 5.8602 7.1429 20.8040 0.9351 0.4840 8.0712

RH-M7 0.7928 7.2638 9.1434 29.3443 0.8936 0.5326 15.8079
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ML models
In this study, six ML models were developed and evaluated based on six distinct performance metrics. Along with 
these metrics, scatter plots, absolute error plots, and grouped marginal plots have also been utilized to display the 
accuracy and errors of the models. To compare the analytical models and the ML models, a raincloud graphic 
and Taylor diagram have been employed.

The AdaBoost model exhibits an R-value of 0.9280, followed by a MAPE value of 10.81%, with the NS and 
a20-index values being 0.8610 and 0.8724, respectively. In comparison, the CatBoost, GBT, RF, stacking, and 
XGB models display correlation coefficients of 0.9349, 0.9627, 0.9877, 0.9536, and 0.9970, respectively. Among 
all ML models, the XGB model outperforms the others in terms of R-value, with a 7.44%, 6.64%, 3.56%, 0.94%, 
and 4.55% higher score than AdaBoost, CatBoost, GBT, RF, and stacking, respectively. Similarly, the NS and 
a20-index values of the XGB model are higher than all other developed ML models. Additionally, the MAPE 
and MAE values of the XGB model are significantly lower than AdaBoost, CatBoost, GBT, RF, and stacking 
models, with reductions of 84.37%, 832.4%, 77.33%, 59.46%, and 81.08% for MAPE, and 84.99%, 83.43%, 
77.60%, 60.37%, and 82.31% for MAE, respectively. Based on all performance metrics, the XGB model exhibits 
good precision.
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Figure 9.   Results of analytical models based on RH (a) RH-M1, (b) RH-M2, (c) RH-M3, (d) RH-M4, (e) 
RH-M5, (f) RH-M6, and (g) RH-M7.
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The graphical representation of all the developed models are shown in Fig. 12a–f. Table 12 displays the values 
of all performance metrics for the developed models (ML models). In these figures, three plots are provided. The 
first plot shows the scatter plot of the training and testing dataset.
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Figure 10.   Results of analytical models based on UPV (a) UPV-M1, (b) UPV-M2, (c) UPV-M3, (d) UPV-M4, 
(e) UPV-M5, (f) UPV-M6, (g) UPV-M7, (h) UPV-M8, (i) UPV-M9, and (j) UPV-M10.
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The second plot is the grouped marginal plot, which combines a scatter plot with density curves along the 
margins to represent the distribution of multiple variables in a single plot. In the last plot, the absolute error 
values of the training and testing datasets is shown. In a grouped marginal plot, each group of observations is 
represented by a different colour (red colour is for experimental values and blue colour is for predicted values) 
and the density curves along the margins show the distribution of each variable for each group. This plot helps 
to visualize the relationship between two variables and the distribution of each variable for different groups in 
the data.

In ML models such as AdaBoost, CatBoost, GBT, RF, stacking, and XGB models only 30.37%, 33.70%, 41.61%, 
61.44%, 25.38%, and 91.12% of data directly lies over the diagonal line (best-fitting line with dark blue colour) 
as shown in scatter plot Fig. 12a–f, sequentially. The range of the errors in the ML models are − 13.57 MPa 
to + 11.91 MPa, − 16.17 MPa to + 12.16 MPa, − 12.31 MPa to + 9.28 MPa, − 7.18 to 5.29 MPa, − 10.16 to 9.57 MPa, 
and − 5.77 MPa to + 4.79 MPa for models AdaBoost, CatBoost, GBT, RF, stacking and XGB, sequentially. The 

Table 10.   Results of UPV models.

Model R MAE (MPa) RMSE (MPa) MAPE (%) NS a20-index SD

UPV-M1 0.6023 26.7906 28.5206 92.4374  − 6.0402 0.0000 0.9573

UPV-M2 0.5199 7.9779 11.1522 27.2374  − 0.0764 0.4882 12.4033

UPV-M3 0.5335 7.5141 9.2433 27.3010 0.2605 0.3800 5.3990

UPV-M4 0.5130 11.9952 15.7864 47.1140  − 1.1569 0.3273 19.589

UPV-M5 0.5823 8.8680 10.1490 36.1114 0.1085 0.3107 11.5807

UPV-M6 0.5788 7.3551 9.1297 27.1806 0.2786 0.4286 8.8651

UPV-M7 0.6058 9.2489 11.8116 32.2130  − 0.2075 0.4064 13.9663

UPV-M8 0.5398 7.5335 8.8995 31.8067 0.3145 0.3870 7.2161

UPV-M9 0.5130 8.1177 9.4867 34.8575 0.2211 0.3689 8.2843

UPV-M10 0.5412 9.4196 11.1954 43.4073  − 0.0848 0.4383 4.7237
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Figure 11.   Results of analytical models based on combined RH and UPV (a) C-M1, (b) C-M2, (c) C-M3, (d) 
C-M4, (e) C-M5, and (f) C-M6, (g) C-M7, (h) C-M8, (i) C-M9, (j) C-M10, (k) C-M11, (l) C-M12, and (m) 
C-M13.
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Figure 11.   (continued)

Table 11.   Results of combined RH and UPV models.

Model R MAE (MPa) RMSE (MPa) MAPE (%) NS a20-index SD

C-M1 0.8460 24.7044 26.6464 83.9522 0.0090 0.0000 0.4055

C-M2 0.8439 9.7360 15.2316 31.3361 0.6762 0.4813 23.1105

C-M3 0.8204 5.3172 6.4556 18.8858 0.9418 0.5409 6.9306

C-M4 0.8351 5.4128 6.4644 21.6169 0.9417 0.6449 11.3957

C-M5 0.8621 4.9295 5.8144 17.5647 0.9528 0.5506 8.8880

C-M6 0.8967 4.3535 5.5816 14.9124 0.9565 0.6602 8.5385

C-M7 0.6930 15.3413 20.2035 63.2649 0.4303 0.2510 25.8080

C-M8 0.8827 7.8394 10.9791 25.6869 0.8318 0.4327 19.5659

C-M9 0.7890 5.2115 6.3365 20.7320 0.9440 0.6075 8.45147

C-M10 0.8083 13.3617 14.9334 54.2474 0.6887 0.1997 11.8870

C-M11 0.5892 7.5515 9.8149 26.2794 0.8655 0.4605 9.0024

C-M12 0.8880 7.1862 9.9536 23.9192 0.8617 0.5160 18.0194

C-M13 0.5398 8.0054 10.1784 26.9645 0.8554 0.3731 5.56242
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absolute error values of AdaBoost, CatBoost, GBT, RF, stacking and XGB models are 14 MPa, 17 MPa, 13 MPa, 
8 MPa, 11 MPa, and 6 MPa, sequentially, as shown in Fig. 12a–f. The grouped marginal plot of the XGB model, as 
depicted in Fig. 12a–f, demonstrates superior performance relative to other ML models. This graphical analysis 
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Figure 12.   Results of the developed ML models (a) AdaBoost, (b) CatBoost, (c) GBT, (d) RF (e) stacking, and 
(f) XGB model.
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further confirms the high precision of the XGB model. Based on performance indices and graphical analysis, the 
ranking of all ML models is in descending order as follows: XGB, RF, GBT, stacking, CatBoost, and AdaBoost.

Comparison between mathematical and ML models
The performance of the analytical and developed ML models had been compared with existing ML models. 
The metrics of all the models (existing ML models, analytical models, and developed ML model) is shown in 
Table 13. The performance of the XGB model is 7.39%, 0.80%, 8.09%, 25.71%, 72.25%, and 11.19% higher than 
Shishegaran et al.4, Asteris and Mokos5, Asteris et al.8, RH-M5, UPV-M6 and C-M6, sequentially. Similarly, the 
NS value of XGB model is 4.83%, 256.75%, and 3.91% higher than RH-M5, UPV-M6, and C-M6, sequentially. 
In addition to that, the a20-index of the XGB model is also higher than all the analytical as well as existing ML 
models. The MAPE value of the XGB model is 75.03%, 86.78%, 91.20%, 93.78%, and 88.67% lower than Shih 
et al.6, Asteris et al.8, RH-M5, UPV-M6 and C-M6, sequentially. In nutshell, the XGB model demonstrates supe-
rior performance as compared to both existing ML and analytical models.

Taylor diagrams and raincloud plots have been used to compare how well the ML and analytical models 
performed. Taylor diagram is drawn between the R-value, RMSE value, and standard deviation. The dark dot-
ted blue line represents the standard deviation of the experimental dataset and green star shows the position of 
the best-fitted model. Figure 13a represents the Taylor plot of RH models. In Fig. 13a, not a single model shows 
good fitting, because the RMSE value of all the models are above 6 MPa.
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Figure 12.   (continued)

Table 12.   Results of ML models.

Model R MAE (MPa) RMSE (MPa) MAPE (%) NS a20-index SD

AdaBoost 0.9280 2.7977 3.6220 10.8137 0.8610 0.8724 8.9091

CatBoost 0.9349 2.5343 3.4498 10.0849 0.8739 0.8752 8.9411

GBT 0.9627 1.8749 2.6392 7.4540 0.9262 0.9390 9.1404

RF 0.9877 1.0595 1.5515 4.1690 0.9745 0.9847 9.2971

Stacking 0.9536 2.3739 2.9436 8.9339 0.9084 0.9501 8.9313

XGB 0.9970 0.4199 0.7576 1.6902 0.9939 0.9972 9.5838
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Figure 13b represents the Taylor plot of UPV models. The RMSE value of all the models above 9 MPa in 
Fig. 13b does not exhibit any good fitting. Figure 13c and d represent the Taylor plot of combined RH and UPV 
models. Only two models (C-M5 and C-M6) in Fig. 13c have RMSE values lower than six MPa. The alignment 
of analytical models, specifically RH-M1, RH-M2, RH-M7, UPV-M1, UPV-M4, C-M1, C-M2, C-M7, C-M8, 
C-M10, and C-M13, exhibits deviations from ideal placement within the Taylor plot. This deviation can be attrib-
uted to the pronounced disparity observed in the standard deviation values. The Taylor plot of the developed 
ML models is shown in Fig. 13e. The RMSE value of the ML models such as GBT, RF, stacking, and XGB models 
is less than three MPa and among these models, the XGB model shows the best fit. Figure 13f shows the Taylor 
plot of the best-selected analytical models (RH-M5, UPV-M6, and C-M6) and best-fitted ML model (XGB).

In addition to that, the raincloud plot has also been used to compare the performance of the selected ana-
lytical models (RH-M5, UPV-M6, and C-M6) and all ML models as shown in Fig. 14. The range of errors 
of all the models such as RH-M5, UPV-M6, C-M6, AdaBoost, CatBoost, GBT, RF, Stacking and XGB mod-
els are  − 12.30 MPa to  + 16.05 MPa,  − 17.57 MPa to  + 32.62 MPa,  − 14.75 MPa to  + 17.64 MPa,  − 13.57 MPa 
to  + 11.92 MPa,  − 16.17 MPa to  + 12.16 MPa,  − 12.31 MPa to  + 9.28 MPa,  − 7.18 MPa to  + 5.29 MPa,  − 10.16 MPa 
to  + 9.57 MPa, and  − 5.77 MPa to  + 4.79 MPa, as shown in Fig. 14. This plot also indicate that the performance 
of the XGB model is higher as compared to all analytical as well as developed ML models.

Sensitivity analysis
Sensitivity analysis is a technique to determine how the uncertainty in the output of a model can be attributed 
to variations in its inputs. SHAP (SHapley Additive exPlanations) is a unified approach to explain the output of 
any ML model. It uses Shapley values, a well-established mathematical concept from cooperative game theory, 
to explain the output of a model by assigning a contribution to each feature64.

For an XGB algorithm, SHAP values can be used to perform sensitivity analysis by calculating the influence 
of each feature to the model’s predictions. Observing the magnitude and direction of the SHAP values associ-
ated with each feature enables the identification of the most influential features affecting the model’s predictions. 
Understanding these values, helps ascertain how altering feature values will affect the predictions of the developed 
model. This information can be useful for interpreting the model’s behaviour and for making decisions about 
feature selection and model interpretation. RH value has the highest impact on the CS of concrete as compared 
to the UPV value. The RH value has an 88.19% influence on the CS of concrete and the rest is contributed by 
UPV values as shown in Fig. 15.

Conclusions
The compressive strength of concrete based on the NDT technique has been evaluated in the present study 
using analytical as well as the ML models. The three groups of analytical models—RH models, UPV models, and 
combined RH and UPV models consist of seven, ten, and thirteen models, respectively. The Ensemble-based ML 
algorithms (AdaBoost, CatBoost, GBT, RF, Stacking, and XGB models) have been used to enhance the accuracy 
of the existing models. The six performance metrics were employed to evaluate the accuracy of both analytical 
and ML models. Furthermore, graphical representations such as scatter plots, absolute error plots, and grouped 
marginal plots were utilized to analyse the fitting of the ML models. In addition to that, Taylor and raincloud 
plots have also been also used to compare the performance of the selected analytical and the developed ML mod-
els. Based on the performance metrics and graphical representations, the following conclusions can be drawn:

•	 In selected analytical models, the correlation coefficient of the RH model (RH-M5), UPV model (UPV-M6), 
and combined RH and UPV model (C-M6) are 0.7931, 0.5788, and 0.8967, sequentially. Similarly, the NS 
and a20-index of the C-M6 model are higher than RH and UPV models with values of 0.9565 and 0.6602, 
sequentially.

•	 The performance of all the developed ML models is higher than existing analytical models. Among ML 
models, the precision of the XGB model is higher in terms of R, RMSE, MAPE, and MAE values.

•	 The R-value of the XGB model is 25.71%, 72.25%, and 11.19% higher than RH-M5, UPV-ML, and C-M6 
models, sequentially.

Table 13.   Comparison of existing ML models with best-fitted analytical and ML models.

Model R MAE (MPa) RMSE (MPa) MAPE (%) NS a20-index SD

Shishegaran et al. (HCVCM-ANFIS)4 0.9284 – 35.7400 – – – –

Asteris and Mokos (ANN)5 0.9891 – 1.4678 – – 1 –

Shih et al. (SVM)6 – – – 6.7700 – – –

Asteris et al. (GPR)8 0.9224 4.1899 5.4815 12.7815 – 0.8204 –

RH-M5 0.7931 5.1998 6.3867 19.2082 0.9481 0.6019 8.2789

UPV-M6 0.5788 7.3551 9.1297 27.1806 0.2786 0.4286 8.8651

C-M6 0.8967 4.3535 5.5816 14.9124 0.9565 0.6602 8.5385

XGB 0.9970 0.4199 0.7576 1.6902 0.9939 0.9972 9.5838
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•	 According to the sensitivity study, RH values have a substantially larger impact on concrete’s CS than UPV 
values.

•	 The Taylor and raincloud plots also confirm the reliability of the XGB model.

Figure 13.   Taylor plots (a) RH, (b) UPV, (c) combined RH and UPV models up to C-M7, (d) combined RH 
and UPV models from C-M8 to C-M13, (e) developed ML models, and (f) best analytical (RH-M5, UPV-M6 
and C-M6) and ML (XGB) models.
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