Znanstveni rad - Izvorni znanstveni rad
Application of Machine Learning in Modeling the Relationship between Catchment Attributes and Instream Water Quality in Data-Scarce Regions
Toxics, 11 (2023), 12; 996. https://doi.org/10.3390/toxics11120996

Kovačević, Miljan; Amiri, Bahman Jabbarian; Lozančić, Silva; Hadzima-Nyarko, Marijana; Radu, Dorin; Nyarko, Emmanuel Karlo

Citirajte ovaj rad

Kovačević, M., Amiri, B. J., Lozančić, S., Hadzima Nyarko, M., Radu, D. i Nyarko, E. K. (2023). Application of Machine Learning in Modeling the Relationship between Catchment Attributes and Instream Water Quality in Data-Scarce Regions. Toxics, 11. (12). doi: 10.3390/toxics11120996

Kovačević, Miljan, et al. "Application of Machine Learning in Modeling the Relationship between Catchment Attributes and Instream Water Quality in Data-Scarce Regions." Toxics, vol. 11, br. 12, 2023. https://doi.org/10.3390/toxics11120996

Kovačević, Miljan, Bahman Jabbarian Amiri, Silva Lozančić, Marijana Hadzima Nyarko, Dorin Radu i Emmanuel Karlo Nyarko. "Application of Machine Learning in Modeling the Relationship between Catchment Attributes and Instream Water Quality in Data-Scarce Regions." Toxics 11, br. 12 (2023). https://doi.org/10.3390/toxics11120996

Kovačević, M., et al. (2023) 'Application of Machine Learning in Modeling the Relationship between Catchment Attributes and Instream Water Quality in Data-Scarce Regions', Toxics, 11(12). doi: 10.3390/toxics11120996

Kovačević M, Amiri BJ, Lozančić S, Hadzima Nyarko M, Radu D, Nyarko EK. Application of Machine Learning in Modeling the Relationship between Catchment Attributes and Instream Water Quality in Data-Scarce Regions. Toxics [Internet]. 2023. [pristupljeno 30.01.2025.];11(12). doi: 10.3390/toxics11120996

M. Kovačević, B. J. Amiri, S. Lozančić, M. Hadzima Nyarko, D. Radu i E. K. Nyarko, "Application of Machine Learning in Modeling the Relationship between Catchment Attributes and Instream Water Quality in Data-Scarce Regions", Toxics, vol. 11, br. 12, 2023. [Online]. Dostupno na: https://urn.nsk.hr/urn:nbn:hr:133:202903. [Citirano: 30.01.2025.]

Prijavite se u repozitorij kako biste mogli spremiti objekt u svoju listu.