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ABSTRACT: Pedestrian behavior and safety are emerging issues in current 
transportation. One way to safely study pedestrian dynamics, especially at 
potential conflict points such as crosswalks, is through micro-simulation. 
This tool provides the opportunity to repeatedly study pedestrian behavior 
and safety under different scenarios of interest. However, to obtain reliable 
results, micro-simulation models need to be calibrated and their parameters 
fine-tuned. One way to methodically calibrate these models is to identify the 
outcomes of interest, develop a predictive model for those specific outcomes, 
and use it as a tool to fine-tune the input parameters of the micro-simulation 
model. To be reliable, the results of the predictive model should be compara-
ble to those of the micro-simulation model, and these should be validated.

The aim of this research is to present a predictive model of pedestrian 
behavior and to evaluate this model and a conventional micro-simulation 

model developed using Vissim/Viswalk, given that the chosen common 
output is pedestrian crossing time. 

To achieve this goal, a multi-step procedure is followed, which is part 
of a more general methodological framework for calibrating the Vissim/
Viswalk micro-simulation model. This evaluation  consisted in a three-
step validation procedure, i.e. visual, conceptual and operational valida-
tion. Operational (statistical) validation was performed by comparing the 
variances of the results to understand whether the predicted sample is 
representative of the simulated sample.

A correlation of 97% have been found between the predicted and 
micro-simulated crossing time values, with mean values of 6.41s and 
6.32s for the simulated and predicted crossing times, respectively. Fur-
thermore, both the predicted and simulated crossing time values fall 
within the ranges found in the literature for field measurements of 
this variable, indicating good agreement with real observed pedestrian 
behavior.

1. INTRODUCTION

A sophisticated tool for transport infrastructure planning 
and design is micro-simulation: it allows to study differ-
ent infrastructural options without their actual realization, 
in order to better meet the needs of the considered road 
users. However, to be useful, the accuracy and reliability 
of the developed models and the obtained results should 
be verified through the steps of calibration and validation. 
This paper is part of a broader research aimed at developing 
a calibration method for pedestrian micro-simulation mod-
els by applying a specifically structured neural network as 
a prediction tool. This research topic is specifically studied 
in relation to the action of pedestrians crossing the road at 
a roundabout entry leg. Although this type of location has 
been extensively studied from vehicular traffic perspective, 
focusing on the impact of pedestrians on vehicular capac-
ity (Bak, & Kiec 2012; Brilon, & Miltner, 2005; Chen, Shao, 
& Hao 2008), research on pedestrian behavior at this type of 
urban location is still ongoing (Obsu, Meurer, Kassa, & Klar, 
2016; Thakur, & Biswas, 2019). Also, the widespread use of 
this type of infrastructure in today’s transport networks, 
highlighting the benefits in terms of safety and capacity for 
motorized traffic (Ambros, Novak, Borsos, Hoz, Kiec, Mach-
cinik, & Ondrejka, 2016; Chen, 2013), makes it even more 
important to examine these benefits for the most vulnerable 
road users as well. 

The paper, which presents the validation of the neural 
network prediction model results, is divided into 6 sections: 
after the introduction, an overview of the existing models, of 

the specifics of Social Force Model and of its implementation 
in Vissim/Viswalk is given; Section 2 explains the addressed 
problem, the study site and the developed micro-simulation 
model; Section 3 explains the process of parameter selection 
and defines the ranges of the same. Section 4 gives a brief 
overview of the formulated predictive model and its training. 
Section 5 explains the method used to evaluate the results 
obtained by the predictive model and validates them applying 
three different methods: visual, conceptual and operational 
validation. The last two sections deal with the discussion and 
conclusions of the research.

2. OVERVIEW OF EXISTING MICROSCOPIC MODELS

Micro-simulation models are very powerful tools for investi-
gating pedestrian behavior and safety. Three main modelling 
approaches can be identified:

−− Physical force based models;
−− Cellular automata (CA) models;
−− Queue models.

Physical models, which include Helbing’s Social Force 
model (Helbing, 1998a), the utility maximization model, and 
Okazaki’s magnetic force model (Teknomo, Takeyama, & Ina-
mura, 2000), follow a common structure characterized by two 
terms: a factor that guides pedestrians to their destination 
and a term that represents the repulsive effects among pe-
destrians themselves and pedestrians and obstacles (Helbing, 
1998b; Shiwakoti, Sarvi, & Rose, 2008).
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Cellular automata, which include the cellular automata 
model of Blue and Adler (Blue, & Adler, 2001) and the benefit-
cost model of Gipps and Marksjö (Gipps, & Marksjö, 1985), 
are based more on the discretization of space into cells. Each 
cell can be occupied by only one agent and its dimensions 
are determined by the researchers (Kouskoulis, Spyropoulou, 
& Antoniou, 2018).

Queueing models, mainly used to study evacuation dynam-
ics, govern pedestrian movement by modeling the facility as 
a network of arcs (openings) and nodes (rooms) and pedestri-
ans as individual flow objects. In these models, the recorded 
evacuation time and the initial reaction time play the main 
role (Teknomo et al., 2000).

On the other hand, artificial intelligence tools, such as 
neural networks, have been widely used recently, including 
in the field of transportation, especially to overcome issues 
related to the lack of analytical description of a problem or 
the difficulty of evaluating the factors/parameters that govern 
the problem itself.

Some efforts have been made by researchers to implement 
neural networks in the process of micro-simulation model 
calibration: (Li, & Yeh, 2001) applied this tool to calibrate 
a CA traffic model, while (Otković, Tollazzi, & Šraml, 2013) 
used them in the calibration process of the car-following 
model.

The aim of this research is to implement the neural network 
prediction function in the calibration process of a pedestrian 
micro-simulation model. To achieve this, the first important 
result is to validate the outputs predicted by the neural net-
work and those obtained by the micro-simulation.

2.1 The Social Force Model and its parameters

The Social Force Model (SFM) was first introduced by (Hel-
bing, 1998b) and it is nowadays implemented in the simula-
tion software Vissim/Viswalk (PTV, 2018).

The basic concept of the SFM is that each pedestrian, de-
fined by its desired speed and target time, moves towards its 
destination ruled by the so-called social forces (Eq.1). 

(Eq. 1)

These effects are:
The attractive forces leading each pedestrian to its goal/

destination  (Eq.2); 
The repulsive forces among pedestrians  and among 

the individual and obstacles  (Eq. 3-4);
The attractive forces due to other pedestrians/objects  

(Eq. 5).
Mathematically, they are expressed as follows:

(Eq. 2)

(Eq. 3)

(Eq. 4)

(Eq. 5)

where:
vα pedestrian actual velocity
vα

0  pedestrian desired velocity
eα pedestrian desired direction
τα relaxation time
rαβ distance

 repulsive potentials
 attractive potential

The original Social Force Model expression was adapted 
to the simulation needs in Vissim/Viswalk, adding some pa-

rameters, which govern pedestrian walking behavior and 
influence the equation (Eq.6):

(Eq.6)

where: 

The highlighted parameters can be defined as follows (PTV, 
2018):

TAU (τ) relaxation time as expressed in Helbing’s original 
model.

LAMBDA_MEAN (λ) amount of anisotropy. It regulates 
the effect of phenomena that take place in the back of the 
considered pedestrian.

A
_soc_isotropic

 and B
_soc_isotropic

 non-measurable parameters, that 
control the two forces among pedestrians.

A
_soc_mean

 and B
_soc_mean

 define respectively the strength and 
typical range of the social force between pedestrians.

NOISE introduces the random forces, which are systemati-
cally added to the calculated forces.

REACT_TO_N number of pedestrians considered for the 
calculation of the forces.

SIDE_PREFERENCE defines whether opposing pedestrians 
prefer using the right or left side when passing each other.

QUEUE_ORDER and QUEUE_STRAIGHTNESS specify the 
properties of the queue.

It should be pointed out that these four last parameters do 
not directly appear in Eq. 6, nevertheless they are at the basis 
of pedestrian walking behavior and are nested in other terms 
(e.g. noise is at the basis of the calculation of random forces 
added to the systematically calculated total forces; react_to_n 
is used in the calculation of the total force to consider the 
effect of surrounding pedestrians, etc.).

As (Kretz, Lohmiller, & Sukennik, 2018) states, although 
the model is conceptually easy to understand, the parameters 
governing it are mainly abstract and difficult to be measured 
and evaluated. In the next sections, after describing the study 
site, the parameter selection is explained, which provides an 
initial selection of parameters and their ranges relevant to 
pedestrian studies.

3. METHODOLOGY

3.1 Addressed problem and case study location

The problem addressed in this research is the validation of 
the results provided by a predictive model that reproduces 
the crossing action - in terms of time - of pedestrians, as 
simulated by Vissim/Viswalk. To achieve this goal, a multi-
step procedure (Figure 1) was applied, which is part of the 
general methodological framework used to calibrate Vissim/
Viswalk. The method followed consists of three pillars: real 
world behavior, micro-simulation and prediction. Each of 
these steps is independent (in terms of workflow), but defined 
features of each pillar influence the others.

In fact, real-world recordings were used to obtain geometry 
and flow data to define the micro-simulation model and the 
real-world crossing time, which are used in further passages 
to obtain the calibrated model. Vissim/Viswalk simulations 
were run to obtain a set of simulated crossing times that could 
be compared to the predicted ones, and to generate a dataset 
consisting of combinations of input parameters and associ-
ated crossing times, which was used as a training set for the 
formulated neural network.

A prerequisite for the creation of the two training and 
prediction databases is, of course, the selection of the input 
parameters, which is described in sub-section 3.3. These two 
databases were used to let the formulated neural network 
learn the relationship between the selected input parameters 
and the selected output (training database) and to validate it 
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on the basis of new input combinations (prediction database) 
for which the network should predict the crossing time. Fi-
nally, the predicted result and the simulated crossing time 
are compared and statistically validated.

The specific crossing action addressed in this study involves 
unsignalized pedestrian crossings within the roundabout’s 
influential area. A roundabout located in the urban area of the 
Italian city of Monfalcone was selected to study pedestrian 
behavior at this specific intersection typology. This location 
(Figure 2) is particularly interesting because there are large 
flows of both motorized - vehicles - and non-motorized - pe-
destrians - users. The crosswalk passes over two traffic lanes 
and is characterized by a length of 10.25 m and a width of 4 m. 

This site was reproduced in Vissim/Viswalk by inputting 
its geometric properties and observed inflows. The vehic-
ular movement was simulated by applying specific speed 
reduction areas, which allowed to simulate the particular 
yielding behavior of Italian drivers, who do not normally 
stop suddenly at crossings. On the other hand, pedestrian 
behavior was modelled by implementing the option of links 
used as pedestrian areas, which visually better reproduced 
the observed movement (for a more detailed description of 
the model, refer to (Gruden, Otković, & Šraml, 2020)).

3.2 Parameter selection and database creation
The issue of parameter selection for fine-tuning them, has 
been addressed by various authors (Kretz et al., 2018; Liao, 
Chraibi, Seyfried, Zhang, Zheng, & Zhao, 2017; Rudloff, Maty-
us, Seer, & Bauer, 2011; Zhong, Hu, Cai, Lees, & Luo, 2015). 
Limiting the review to the Social Force Model, Table 1 reports 
on some investigations and the calibrated parameters.

A considerable work was done by (Kretz et al., 2018) who, 
starting from an initial set of 13 parameters, through 3 steps 
reduced them to 4, changing also their values. 

In this study, since the examined condition is strictly 
linked to the interaction between pedestrians and vehicles, 
5 pedestrian parameters and 3 car-following model param-
eters were selected and are listed in Table 2.

With these parameters, the databases for the training of 
the neural network and its application were created. Two 
databases were developed: the training database consisted of 
100 combinations of input parameters with a changing step 
of 0.1. Each combination was simulated via Vissim/Viswalk 
and the obtained crossing time was entered into the database. 
A second database, corresponding to the 20% of the previous 
one, was created for the prediction of the neural network and 
for the evaluation of its ability to generalize.

Figure 1 First steps for the development of the calibration methodology

Figure 2 Study location: (a) urban roundabout set in Monfalcone (GO) Italy; (b) the crosswalk under study modelled in Vissim/Viswalk
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3.3 The prediction model
Neural networks were investigated as tool to develop the pre-
diction model for pedestrian crossing time. The formulation 
of the neural network was performed using NeuroShell2 (Ad-
vanced Neural Network and Genetic Algorithm Software, n.d.). 
Based on previous author’s experiences (Otković et al., 2013; 
Otković, Varevac, & Šraml, 2015), a first screen of all available 
network structures was made and a ward network was selected 
(Figure 1). The structure of the chosen neural network consists 
of 5 layers. The 8 input parameters chosen for the network are 
represented by the neurons of the input layer, the chosen output 

- crossing time - is concretized by 1 neuron of the output layer; 
3 hidden layers consist of 4 neurons each, but they differ for 
the prediction function (Figure 3). The fundamental feature of 
the selected ward network is the composition of the activation 
functions: although the input slab is connected to the hidden 
layers by a linear function, the hidden layers are connected to 
the output slab by three different functions, namely the Gauss-
ian, the hyperbolic tangent and the Gaussian compact func-
tions (Figure 3). The neural network was trained on the training 
database obtained from the results of Vissim/Viswalk simula-
tions. The database, briefly introduced in Sections 2 and 3, was 

Authors Calibrated parameters

(Liao et al., 2014) free speed, anisotropy of social force; interaction strength and its range

(Rudloff et al., 2011) parameters related to attractive and repulsive forces

(Zhong et al., 2015) interaction strength and range, obstruction effects of physical interactions, 4 social force parameters + 8 scenario 

specific parameters

(Kretz et al., n.d.) radius of pedestrians, A social, B social, B physical, border, A social Isotropic, B social Isotropic, τ, friction force, side 

preference right, velocity dependence, λ, longitudinal scale consider at maximum n pedestrians

(Hongfei et al., 2009) pedestrian size, desired speed, time pressure

(Johansson, Helbing, 

Shukla, 2008)

interaction strength and range, anisotropy

(Zeng et al., 2017) Interaction strengths and ranges for repulsive and attractive forces, relative distance, relative conflicting time, 

‘‘footprint” effect.

Table 1 Researches on pedestrian simulation parameter fine-tuning

Input Name Description Min Max

I1 Tau Relaxation time 0.05 2

I2 Lambda Amount of anisotropy 0 0.4

I3 Asoc_iso Parameter governing pedestrian forces 3 7

I4 Bsoc_iso Parameter governing pedestrian forces 0.1 10

I5 Side_pref Side preference -1 1

I6 Avg standstill distance [m] Average standstill distance 1 3

I7 Additive part of safety distance [m] Additive part of safety distance 1 5

I8 Multiplicative part of safety distance [m] Multiplicative part of safety distance 1 6

Table 2 Pedestrian and vehicular micro-simulation parameters selected in the current study

Figure 3 Structure of the chosen ward network
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used for the learning and validation steps of the network, 80% 
for training and the remaining 20% as a testbed for the initial 
evaluations. An additional database, developed according to the 
same criteria as the first one and corresponding to the 20% of 
the training dataset, was generated after training and testing 
the network to validate it for generalization.

4. VALIDATION OF THE RESULTS

4.1 Visual validation

Visual validation was performed by comparing the results of 
the neural network and the simulation model first via descrip-
tive statistics and then via graphs. In Figure 4, the distribu-
tions of the two samples are reported. Descriptive statistics 
of the samples indicate mean crossing times of 6.41 s and 
6.32 s for simulated and predicted outputs, respectively, and 
standard deviations of 3.50 and 3.43. Also, predicted crossing 
time values stand within the range [3.4; 12.51] s, similarly to 
the simulated ones, which belong to the range [2.44; 14.5] s. 
For the training database, a correlation of 97% was obtained 
between the simulated and predicted data, and a mean abso-
lute error of 0.559 s was calculated.

The statistics worked out on the results of the generaliza-
tion step, which used a much more restricted dataset than 
the training dataset, also confirm the previous performance, 
returning a 94% correlation and a mean absolute error of 
1.76 s. Since the asymmetry calculated in the descriptive 
statistics indicates a  probable non-normal distribution 
of the samples, their normality was checked by applying 
the Anderson-Darling test. This test consists in evaluating 
whether the p-value calculated for the selected sample is 
lower than the selected significance level (5%). If it is, the 
distribution is not normal, otherwise the non-normality 
of the sample cannot be established and additional tests 
should be devised. The results reported in Table 3 strengthen 
the hypothesis of non-normality, providing p-values lower 
than the significance level for both simulated and predicted 
crossing times.

Table 3 Results of Anderson-Darling test

Simulated (Vissim) Predicted (Neural Network)

AD 6.355 10.424

P-Value <0.005 <0.005

Figure 4 Distribution of crossing time values simulated with Vissim/Viswalk and calculated by the neural network

Figure 5 Comparison between the simulated outputs and the accepted values, predicted by the ward network

Figure 6 Comparison between the simulated outputs and the not accepted values, predicted by the ward network
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Figure 5 and Figure 6 show the graphical comparison of 
the 2 model outputs: in both graphs, the x-axis represents 
the simulated outputs, while the y-axis shows the predicted 
ones. Figure 5 shows the accepted predicted values com-
pared to the simulated ones, while Figure 6 represents the 
rejected pairs.

Figure 5 shows a high level of correspondence between 
the simulated and predicted results, confirming the findings 
obtained through descriptive statistics; the regression equa-
tion also provides promising parameters, in particular a coef-
ficient of determination of 98.8%. This value is higher than 
the 97% reported by previous statistics because, unlike these 
elaborations (which considered the entire datasets), only the 
accepted values are considered here. Moreover, three clusters 
of outputs can be identified: they correspond to [2;4] s, [6;8] s 
and [12;14] s. In particular, the cluster [2;4] s corresponds to 
critical parameter combinations that were expected to give 
unrealistic results, nevertheless it was decided to use them in 
order to train the network on them as well and avoid future 
errors. As for the results in Figure 5, they were not accepted 
because they have a percentage error higher than 5%, yet it 
can be seen from the regression equation that they still have 
a good coefficient of determination index R2=90%. Moreover, 
the graph in Figure 5 shows that the highest errors occur in 
the most critical cluster, while they are less pronounced in 
the other two clusters.

Additionally, a Kruskal-Wallis test was developed to un-
derstand, which of the input parameter most significantly 
affect crossing time. This test, comparing p-value to the set 
significance level – in this case 0.05, states if the null hypoth-
esis „the population medians are all equal“ is valid or must 
be rejected. If the p-value is less than the chosen significance 
level, the null hypothesis must be rejected, otherwise it can be 
confirmed. In the considered study, Kruskall-Wallis has been 
applied to all the selected input parameters to understand 
their influence on the output „crossing time“. It turned out 
that all p-values are lower than the significance level (Table 6), 
and therefore all parameters significantly affect crossing time. 
For seek of completeness it has to be clarified that P-values 
reported in Table 4 are all null: actually, they differentiate one 
from the other for such low values, that do not influence the 
results, when compared to the significance level and thus they 
have been omitted. To understand which parameter influences 
the most the crossing time, the same test provides H-values. 
The greater this value is, the most influential the relative 
parameter. Table 6 summarizes also these results.

From Table 4 it can be inferred that the 3 most influential 
parameters are I1, I3 and I8, i.e. τ, Asoc_iso and multiplica-
tive part of safety distance.

4.2 Conceptual validation
As mentioned in the previous sections, the addressed meas-
ure of performance is crossing time. Conceptual validation 
must confirm that the results of the models are consistent 
with the accepted concepts behind them. In this case, con-
ceptual validation of the results requires verifying that they 
stand in appropriate ranges for the chosen infrastructure. 
Several papers found in the literature address pedestrian 
crossing time at both signalized and unsignalized crosswalks 
(Virkler, & Guell, 1984; Jain, Gupta, & Rastogi, 2014; Thomp-
son, Rivara, Ayyagari, & Ebel, 2013). Manuals such as (HCM, 
2016) and (National Joint Committee on Uniform Traffic Con-
trol Devices (U.S.). (1971)) provide guidance and equations for 
calculating crossing time at signalized intersections.

(HCM, 2016) gives an equation (Eq. 7) for calculating 
pedestrian crossing time at signalized crossings that takes 
into account the presence of a platoon with more than 15 
people:

(Eq. 7)

Where:
t

s
 is pedestrian start-up time, set to 3.2 s;

L is the length of the crosswalk;
v

p
 is pedestrian speed;

a is a parameter set to 2.7 and 0.27 respectively if the cross-
walk width is larger of 3m (10ft) or not;
W is the width of the crosswalk. It is set equal to the real 
width, if it is more than 3 m, while it set equal to 1 if it is 
less than 3m.
N

ped
 is the number of pedestrians crossing in an interval, and 

it depends from the cycle and green durations.

Also, when dealing with unsignalized intersections, (HCM, 
2016) provides a formula (Eq. 8) to calculated pedestrian criti-
cal gap, i.e. the time below that a pedestrian will not attempt 
to begin the action of crossing. The critical gap is defined as 
following:

(Eq. 8)

Where t
c
 stands for critical gap time, while the other symbols 

are the same previously mentioned.
(National Joint Committee on Uniform Traffic Control De-

vices (U.S.). (1971)) points out that the crossing time - con-
sidered as the sum of the so-called walk interval and the 
pedestrian clearance time - should be calculated as the time 
it takes a pedestrian to travel the length crossed at a speed 
of 0.91 m/s (3 ft/s).

Various authors (Virkler et al., 1984; Jain et al., 2014; Ma-
linovskiy Wu, & Wang, 2008) also dealt with the measure-
ment of crossing times at different locations.

(Virkler et al., 1984) studied 6 locations, 4 of which were 
signalized ones in the downtown, while two were unsignal-
ized intersections near a stadium and traffic was controlled 
by a police officer. They found crossing time values rang-
ing from 5.9 to 9.8 s at the signalized crossings, and values 
around 15 s for the unsignalized ones. (Jain et al., 2014) ana-
lyzed pedestrian crossing behavior, highlighting the influ-
ence of various factors on it. They considered uncontrolled 
intersections where pedestrians can cross in one or two steps 
modifying in this way their crossing time. They found a range 
of crossing time from 5 to 9 s for one-step crossings and from 
3 to 12 s for two-step crossings. (Thompson et al., 2013) fo-
cused their work on the distraction rate caused by the use of 
technological devices and also reported the crossing times. 
They found a mean crossing time of 10.4 s. (Malinovskiy et 
al., 2008) also developed an automatic approach to capture 
pedestrian parameters such as waiting time, crossing time, 

Table 4 Results of Kruskal-Wallis test on the selected parameters

Input 

parameters

Description H-values P-values Significance 

level

I1 Tau 80.63 0 0.05

I2 Lambda 47.67 0 0.05

I3 Asoc_iso 80.65 0 0.05

I4 Bsoc_iso 69.69 0 0.05

I5 Side_pref 27.15 0 0.05

I6 Avg standstill 

distance

48.04 0 0.05

I7 Additive part of 

safety distance

53.55 0 0.05

I8 Multiplicative 

part of safety 

distance

80.68 0 0.05
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and arrival rate, and they provide some ranges for these 
quantities. As for the crossing time, values ranging from 4.5 
to 9.2 s were given. 

All listed values are shown in Table 5, where the comparison 
between the mean crossing time values provided by the simu-
lation and prediction models and the crossing time ranges on 
intersections found in the literature is provided.

It should be noted that the ranges are quite variable, de-
pending on both the nature of the intersection, its geomet-
ric properties, and the properties of the action itself (1- or 
2-step). Anyway, the simulated and predicted values belong 
to the ranges of crossing time reported in the literature and 
based on real measurements. Considering the measurements 
done at the chosen location, it can be seen that though the 
mean value of the measured sample is higher than the simu-
lated and predicted crossing times, both of them stands in the 
range of the measurements. At this point there is a difference 
of 1.86 s and 1.95 s between simulated and measured values 
and predicted and measured crossing time respectively. Nev-
ertheless, it should be considered that these values are not 
related to the combination of input parameters best matching 
the on-field measurements.For seek of completeness, Table 6 
summarizes the descriptive statistics of the crossing time 
sample measured on field.

These findings  give good expectations for further steps of 
the research. In fact, the final goal will be that the simulation 
and prediction results obtained with the best combination of 
input parameters agree with the real conditions.

4.3 Operational validation

The operational validation consists of statistical testing of the 
model results. For this purpose, tests for two variances were 
applied. This type of test generally compares independent 
samples or paired samples by calculating the difference be-

tween the absolute deviations and the group (Derrick, Ruck, 
Toher,  & White, 2018). Examples of this test typology include 
the F-test, which is used to evaluate two independent samples 
and assumes normality of the data as a precondition; the Pit-
man-Morgan test is more commonly used to evaluate paired 
samples under normality conditions. When the normality pre-
condition is violated, these tests lack in robustness. Moreover, 
they cannot be applied when both paired and independent 
samples are present (Derrick et al., 2018). Another set of two-
variance tests is based on the deviations from the median. 
This category includes the Brown and Forsythe test-better 
known as Levene’s test since it is a modification of Levene’s 
original calculation- (Derrick et al., 2018) and the Bonnett 
test (Bonnett, 2006). These tests are robust and powerful even 
when the data are not normally distributed and can be used 
when the samples are paired and independent, while they 
lose their power when the samples are either paired only or 
independent only (Derrick et al., 2018).

Due to the non-normal distribution of the data, the F-test 
and Pitman-Morgan -test were excluded and both Levene’s 
test and Bonett’s test were performed. This decision was 
based on the generally higher reliability of the Bonett test, 
but also on the trustworthy results of the Levene test when 
applied to highly skewed and tailed distributions (Kitchen, 
2009; Marusteri, & Bacarea 2010; McDonald, 2014). The first 
step in conducting the tests was to calculate the variance, 
standard deviation, and confidence interval. The significance 
level for both tests was set at 5%. The ratio of the standard 
deviations was found to be 1.021 and that of the variances 
was found to be 1.043. By applying the two recalled tests, the 
results summarised in Table 7 were obtained. 

Both the Bonett and Levene tests are based on calculating 
the p-value and accepting or rejecting the null hypothesis, 
which states that the ratio of standard deviations or variances 
is not statistically significant. If the p-value is lower than 
the significance level, the null hypothesis must be rejected; 
otherwise, it can be accepted. As can be seen from Table 7, 
in both cases the p-value exceeds the set significance level 
(5%), therefore it can be judged that the two ratios are not 
statistically significant, which confirms the good fit of the 
result predicted by the neural network to the crossing time 
simulated by Vissim.

Table 6 Statistics of the on-field measured crossing times [s]

Measured crossing time

Mean 8.27

Standard error 0.13

Median 8.0

Standard deviation 1.54

Asimmetry 0.73

Min 4

Max 14

Confidence level 0.26

Table 7 Results of Bonett’s and Levene’s tests

Test Confidence interval 

for StDev ratio

Confidence interval 

for variance ratio

P-Value

Bonett (0.845; 1.228) (0.715; 1.509) 0.822

Levene (0.760; 1.402) (0.578; 1.966) 0.846

Authors Crossing typology Crossing time range [s]

Present findings Unsignalized, on roundabout entry leg 6.318 (predicted - NN);

6.407 (simulated - Vissim)

4.0-14.0 (mean 8.27) (measured on field)

(HCM, 2016) Unsignalized crossings (time gap – calculated 

for the given geometry)

11.6

(National Joint Committee on Uniform Traffic 

Control Devices (U.S.). (1971))

Signalized crossings 11.26

(Jain et al., 2014) Uncontrolled crossing – one step 5.0-9.0

(Jain et al., 2014) Uncontrolled crossing – two steps 3.0-12.0

(Virkler et al., 1984) Signalized crossing 9.0-15.6

(Thompson et al., 2013) Various intersections 10.4 (average value)

(Malinovskiy et al., 2008) Signalized intersections 4.5-9.2

Table 5 Ranges of crossing time found in literature
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5. DISCUSSION

All three steps of the validation process yielded very valuable 
results. Visual validation made it possible to determine ac-
ceptable and unacceptable results and, based on descriptive 
statistics, to hypothesize further necessary analyzes to be 
developed on the data samples. Moreover, optimal correla-
tion indices (97% for the training data sample and 94% for 
the generalization sample) were obtained. The conceptual 
validation showed the agreement between the results of the 
models and the ranges measured in the literature and con-
firmed that the simulated and predicted crossing time can 
effectively reproduce the real observed pedestrian behavior. 
The results of the statistical analysis not only confirm the 
high degree of correlation between the two data sets, but also 
show a very high degree of overlap between the two modeling 
results. Assuming 95% confidence interval, it can be outlined 
that the ratio between the two variances is very similar to 1, 
namely 1.021, which confirms the good fit of the compared 
databases. This preliminary evaluation is very important as 
it confirms the appropriate selection of the neural network, 
its input parameters and the correctness and accuracy of the 
training and validation steps.

6. CONCLUSIONS

In this paper, a three-step validation of a pedestrian cross-
ing time prediction model is performed, which consists in 
a visual, conceptual and operational validation. The present-
ed prediction model is based on the application of neural 
networks to reproduce a selected output of Vissim/Viswalk 
micro-simulation model, i.e. crossing time. The selection 
of input parameters for the prediction model is also briefly 
described. A ward neural network was formulated, trained 
and validated on a large data set consisting of random com-
binations of these parameters. Visual validation, consisting 
of comparison among the crossing times simulated by Vis-
sim/Viswalk and the ones predicted by the ward net, showed 
a very high level of correlation - 97% on the training dataset 
and 94% on the validation dataset. The conceptual validation 
demonstrated the agreement of the simulated and predicted 
data with the real-world measurements and the ranges of 
crossing time found in the literature. Finally, the operational 
validation was elaborated, consisting in the development of 
statistical tests based on the comparison of the variances 
and standard deviations of the two populations. The evalua-
tions carried out confirmed the well-fitting of the predicted 
results with the simulated ones, by showing a non-significant 
statistical difference between the two data sets. Thus, it can 
be concluded that a reliable prediction model has been for-
mulated that well reproduces pedestrian crossing time as 
modeled by Vissim/Viswalk. Moreover, the obtained values 
are comparable to measurements in the field and therefore 
suitable for real-world applications.

All the summarized results are very influential for the de-
velopment of the predictive model and for its further applica-
tions. Indeed, the formulated neural network will be applied 
in the next steps in the process of calibration of the micro-
simulation model implemented in Vissim/Viswalk, and a good 
fit of these preliminary results is essential for the evaluation 
of the whole methodology to be developed.
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