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Abstract: Replacing a specified quantity of cement with Class F fly ash contributes to sustainable
development and reducing the greenhouse effect. In order to use Class F fly ash in self-compacting
concrete (SCC), a prediction model that will give a satisfactory accuracy value for the compressive
strength of such concrete is required. This paper considers a number of machine learning models
created on a dataset of 327 experimentally tested samples in order to create an optimal predictive
model. The set of input variables for all models consists of seven input variables, among which six
are constituent components of SCC, and the seventh model variable represents the age of the sample.
Models based on regression trees (RTs), Gaussian process regression (GPR), support vector regression
(SVR) and artificial neural networks (ANNs) are considered. The accuracy of individual models and
ensemble models are analyzed. The research shows that the model with the highest accuracy is an
ensemble of ANNs. This accuracy expressed through the mean absolute error (MAE) and correlation
coefficient (R) criteria is 4.37 MPa and 0.96, respectively. This paper also compares the accuracy
of individual prediction models and determines their accuracy. Compared to theindividual ANN
model, the more transparent multi-gene genetic programming (MGPP) model and the individual
regression tree (RT) model have comparable or better prediction accuracy. The accuracy of the MGGP
and RT models expressed through the MAE and R criteria is 5.70 MPa and 0.93, and 6.64 MPa and
0.89, respectively.

Keywords: self-compacting concrete; Class F fly ash; compressive strength; machine learning;
artificial neural networks; regression trees; Gaussian process regression

1. Introduction

The significant production of Portland cement results in the emission of large amounts
of carbon dioxide, and the replacement of cement with fly ash is one way to reduce the
emission of greenhouse gases and thus contribute to sustainable development. ASTM C618
defines two classes of fly ash used in concrete: (1) Class F with low calcium content; and
(2) Class C with high calcium content. Class F is usually obtained by burning anthracite or
bituminous coal, and Class C is usually obtained by burning lignite or partially bituminous
coal [1,2]. The ASTM C618 standard defines the physical, chemical, and mechanical
properties of this class of fly ash.

The content of Portland cement is usually such that it has 65% lime, part of which
becomes free and available during hydration, and its mixing with Class F fly ash as
pozzolanic material forms new binders while improving many properties of the resulting
concrete. The advantages of using fly ash in concrete are increased strength, increased
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workability, reduction in the appearance of excess water during installation and lower
water demand, lower water permeability and reduced penetration of chloride ions, reduced
heat of hydration, greater resistance to sulfates, greater resistance to alkaline reactivity and
reduced shrinkage during drying [3].

SCC is a high-performance concrete, the main characteristic of which is its fluid and
viscous consistency allowing it to flow through densely reinforced structural elements
without the addition of outside energy for compaction [4–6]. The use of ordinary Portland
cement concrete in the filling of more complex formwork requires mechanical vibration.

This unique property of SCC can be achieved by using complementary cementitious
materials such as Class F fly ash. Fly ash particles behave as one type of miniature ball
bearings inside the concrete mix, which gives them the effect of lubricant, which is a
particularly useful property in SCC [3].

The application of fly ash in concrete results in a slightly slower reaction and less
heat per unit time than Portland cement, which reacts more quickly. Less heat release is
especially important in massive concrete structures, which is an advantage of using fly ash
in such structures.

In the problem of predicting the compressive strength (CS) of SCC in recent years,
we have an increasing application of machine learning (ML) methods and algorithms
(Table 1). The most common is the application of ANN models. Siddique et al. [7] worked
on a model of the application of ANN for predicting the CS of SCC at different sample
ages from 7 to 365 days. MAE, RMSE, and correlation coefficient criteria ® were used as
accuracy criteria. In their paper, Asteris et al. [8] investigated the application of ANN
in predicting the CS of SCC with the addition of fly ash after 28 days. The basis for the
development of the model was tests of 169 samples collected from the published literature.
Douma et al. [9] investigated the application of ANN to model the properties of SCC with
the addition of fly ash. The prediction of fresh concrete properties and CS after 28 days
was analyzed. Models with a total of 6 constituents as input variables were analyzed,
and the base consisted of 114 examined samples. Models were evaluated through MSE,
coefficient of determination, and MAPE criteria. The research recommended an ANN
model with one hidden layer of 17 neurons as optimal. Asteris and Kolovos [10] worked on
the application of a surrogate model to assess the CS of SCC after 28 days. Eleven different
constituents of SCC were considered, one of which was fly ash. Different architectures
of ANNs trained on a set of data from 205 examined samples were analyzed, and their
accuracy was evaluated through the correlation coefficient R. They recommended using
ANN as an optimal model. Saha et al. [11] researched the application of the support vector
machines (SVM) model with different kernel functions in predicting the properties of fresh
and hardened concrete with the addition of fly ash. The models were evaluated via a
correlation coefficient. A model with an exponential radial basis function (ERBF) was
recommended as the optimal model. Research related to the examination of the properties
of fresh and hardened high-volume fly ash concrete was conducted by Azimi-Pour and
others [12]. The application of SVM with different linear and nonlinear kernel functions
was tested, based on the tested samples in a fresh and hardened state. The determination
coefficient, RMSE, and MAPE were used as accuracy criteria. A model with an RBF kernel
function was recommended as a model with higher accuracy compared to others. In their
study of CS prediction modeling lightweight self-compacting concrete with the addition of
fly ash, Zhang et al. [13] analyzed hybrid procedures in which they combined the beetle
antennae search algorithm (BAS) with the random forest (RF) algorithm. The BAS algorithm
was used to optimize the hyperparameters of the RF model. Song et al. [14] worked on
the application of regression trees (RT), ANNs, genetic engineering programming, and
boosting regressor models in the development of models for predicting the CS of SCC.
The accuracy of the model was assessed using cross-validation, and the criteria used were
the coefficient of determination (R2), root mean error (RME), and root mean squared error
(RMSE). Research recommended the use of ensemble algorithms in terms of accuracy.
Hadzima-Nyarko et al. [15] investigated the application of SCC with the use of rubber and
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fly ash additives. The paper analyzed the application of different GPR models. This study
showed that Gaussian process regression (GPR) modeling is an appropriate method for
predicting the CS of SCC with recycled tire rubber particles and fly ash. Their results were
further confirmed by scanning electron microscopy (SEM) images. Kovacevic et al. [16]
conducted a similar study to create a model for predicting the CS of lightweight concrete
with the addition of rubber and fly ash. The research concluded that GPR models are the
optimal choice in this case. The combination of ANN models where network parameters
are optimized using the firefly optimization algorithm in the prediction of CS samples of
different ages was considered by Pazouki et al. [17]. Farooq et al. [18] performed research on
determining a suitable model for predicting the CS of concrete modified with fly ash after
28 days. Models of ANNs, support vector machines, and gene expression programming
(GEP) models were tested. The GEP model was proposed as the optimal model. In their
study, de-Prado-Gil et al. dealt with the application of the ensemble methods: random
forest (RF), K-nearest neighbor (KNN), extremely randomized trees (ERT), extreme gradient
boosting (XGB), gradient boosting (GB), light gradient boosting machine (LGBM), category
boosting (CB) and the generalized additive models (GAMs), and for the development of
the models, 515 samples were collected. The results indicated that the RF models have a
strong potential to predict the CS of SCC with recycled aggregates [19].

Table 1. Review of the application of ML algorithms in the development of compressive strength
(CS) prediction models in self-compacting concrete (SCC).

Type of
Concrete Algorithm Data

Points Year Authors Reference

SCC ANN 80 2011 Siddique et al. [7]

SCC ANN 169 2016 Asteris et al. [8]

SCC ANN 114 2016 Douma et al. [9]

SCC ANN 205 2017 Asteris et al. [10]

SCC Support vector
machines (SVM) 115 2019 Saha et al. [11]

SCC SVM 340 2019 Azimi-Pour et al. [12]

Lightweight
self-compacting

concrete (LWSCC)

Beetle antennae search
(BAS)-algorithm-based

random forest (RF)
131 2019 Zhang et al. [13]

SCC

Regression trees (RT),
gene-expression

programming (GEP),
boosting regressor (BR)

97 2021 Song et al. [14]

Self-compacting concrete
with waste rubber (SCRC)

Gaussian process
regression (GPR) 144 2021 Hadzima-Nyarko et al. [15]

Self-compacting concrete
with waste rubber (SCRC)

NN, Bagged trees, RF,
boosted trees, SVM, GPR 166 2021 Kovacevic et al. [16]

SCC
NN, NN + firefly

optimization
algorithm (FOA)

327 2021 Pazouki et al. [17]

SCC NN, SVM, GEP 300 2021 Farooq et al. [18]

SCC with
recycled aggregates

RF, KNN, ERT, XGB, GB,
LGBM, CB, GAM 515 2022 de-Prado-Gil et al. [19]

The novelty of this research is the use of a significant number of state-of-the-art ML
methods trained on a significant set of experimental data. This paper is also important
as it defines the optimal model for predicting the CS of SCC of different sample ages.
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The research describes in detail the procedure for optimizing the hyperparameters of the
model and gives a detailed comparative analysis of all models. MGGP models, models
based on regression trees (RT, bagged, RF, and boosted trees), the application of SVM
models with linear and nonlinear kernel functions (linear, RBF, and sigmoid), different GPR
models, ANN models, and ensembles composed of individual models of ANNs. This paper
also investigates the application of GPR methods with automatic relevance determination
(ARD) covariance functions, which, according to the authors, has not been used to date for
modeling the CS of SCC with Class F fly ash.

2. Methods

Machine learning (ML) is a branch of artificial intelligence and includes methods of
training algorithms such that they can learn from data and make decisions and predictions,
which can be applied in the modeling of the behavior of structures and materials (Table 1).
The strength of ML methods lies in the fact that these methods can represent a general
relationship or function directly from experimental data to model the behavior of complex
systems with multiple influence variables, whose effects, both individual and synergistic,
are unknown or difficult to predict. In addition, these methods can process a large amount
of data that contain, not only, complex information about the observed phenomenon but
also “noise”, which is an integral part of experimental data. The application of ML methods
has become more pronounced in recent years due to the increasing amount of data available
as well as due to significant progress in the field of computing.

2.1. Multi-Gene Genetic Programming (MGGP)

MGGP is an ML method whose root is in biological processes that it seeks to emulate.
It can be used to define symbolic expressions to predict a continuous output variable
for some input variables (symbolic regression). This method generates appropriate ex-
pressions (represented by trees) and these expressions are improved in iterations using
evolutionary methods.

In contrast to traditional regression analysis methods where there is bias in modeling,
the structure is assumed in advance, and the parameters of the model are determined from
the data; in MGGP, however, the empirical data themselves define the structure of the
model. Unlike other machine learning methods such as ANN, the MGGP method provides
insight into the physical process under consideration [20]. MGGP enables the creation
of a number of models that are defined by different symbolic expressions and that have
different accuracy and complexity.

In the first generation, the MGGP method generates a random population of models.
An individual model in a population is represented by one or more individual trees or one
or more individual genes (Figure 1). Each tree represents one model gene that is generated
using the appropriate mathematical functions (plus, minus, times, . . . ). using M corre-
sponding input variables x1, x2, . . . , xM and ephemeral random constants (ERCs) generated
within the appropriate ranges. Tree nodes end in either the appropriate input variables or
constants, and are called terminal nodes, while other nodes are called functional nodes.

If the number of genes within an individual is denoted by Nk
G, then that individual

can be written as Jk =
{

G1,k,G2,k, . . . ,Gi,k,, . . . , GNk
G ,k,} where Gi,k represents the ith gene

within the kth individual.
Each model is limited in terms of the maximum number of individual trees that make

it up, which is denoted by Nmg and in terms of the depth of the trees generated. Models
do not have to be composed of the same number of genes, and individuals within the first
generation have the greatest diversity.

The general structure of MGGP models is illustrated in Figure 2. The MGGP regression
model can also be considered as a pseudo linear model in the sense that it represents a
linear combination of the nonlinear transformations of input variables.
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Figure 1. An example of an MGGP model that has two genes.

Figure 2. The general structure of the MGGP model.

The individuals that make up the next generation are created using crossover, mutation,
and the direct copying of the individuals of the previous generation. In the crossover, the
pre-selection of individuals is necessary. In the crossover, either the entire gene can be
replaced or only a partial gene can be replaced. Two-point high-level crossover operation
allows the replacement of entire genes between two parent individuals by defining two
random points of intersection. Consider this in the following example.

Let individual J1 contain the following genes [G1,1 G2,1 G3,1 G4,1 ] and let individual
J2 contain the following genes [G1,2 G2,2 G3,2 G4,2 G5,2 ]. Let us denote by <> the genes
that are randomly included with two cross-sections in both models, i.e.,

J1 : [G1,1 < G2,1 G3,1 > G4,1 ] ,

J2 : [G1,2 G2,2 < G3,2 > G4,2 G5,2 ].

Parts of the model or whole genes covered by random cross-sections are marked in
bold and they are exchanged in offspring O1 and O2. As a result of this crossover, the
number of genes will decrease in one offspring, while the number of genes will increase in
the other offspring [20].

O1 : [G1,1 G3,2 G4,1 ] ,

O2 : [G1,2 G2,2 G2,1 G3,1 G4,2 G5,2 ].

Crossover is also implemented at the level of one gene (low-level crossover) where the
structure of a part of the gene changes (Figure 3a,b). However, only part of the gene may be
exchanged (that is, only part of the tree is exchanged). In addition to crossover, mutation at
the level of a single gene is also possible (Figure 3c,d). In a mutation, one gene and one
node within it are selected at random, and then the appropriate mutation is applied, where
a randomly created subtree is added at the site of the selected node.
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Figure 3. Crossover and mutation operation in MGGP: (a) random selection of parent tree nodes;
(b) exchange of parents’ genetic material; (c) random node selection in tree mutation; and (d) mutation
of a randomly selected part of a tree.

The prediction of the output y for the training data is given by [20]:

ŷ = b0 + b1t1 + b2t2 + . . . + bGtG (1)

where b0 is the bias term, bi is the ith scaling parameter, ti is the (N × 1) vector of outputs
from the ith tree (gene).

G is defined as N × (G + 1) gene response matrix i.e., G = [ 1 t1 t2 . . . tG], and b as
(G + 1)× 1) vector of the coefficients b0, b1, . . . , bG i.e., b = [b0 b1 b2 . . . bG]. In matrix G,
the first column is composed of ones and dimensionality N × 1 to include bias input [20].

Hence, the previous Equation (1) can be written as:

ŷ = Gb (2)

The least-squares estimate of the vector b can be computed from the training data as [20]:

b =
(

GTG
)−1

GTy (3)

The RMSE is then calculated and used as the fitness (objective) function to be mini-
mized within the MGGP algorithm. Here, we can see how the MGGP model is linear in
terms of parameters and the coefficients are determined by the method using the least
squares method.
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In each succeeding generation, individuals are selected for breeding using regular
tournament selection that uses only RMSE or Pareto tournament or a mixture of both.
In Pareto tournament selection, each individual is selected probabilistically based on its
RMSE (fitness) value and its expressional complexity. Expressional complexity is computed
by summing together the node count itself within stable and all possible subtrees that
can be obtained from that stable [20]. Thus, if there are two trees with the same number
of nodes, flatter trees will have an advantage over deep trees in terms of expressional
complexity values. As there are several trees (genes) in the MGGP model, the expressional
complexity of the model is equal to the sum of the expressive complexity of all trees (genes)
in the model.

2.2. Regression Tree Ensembles

Methods based on classification trees can be applied to both regression and classifica-
tion problems. A tree is built from the root to the leaves, the so-called greedy approach. In
the beginning, all instances of space belong to the same set, after which space is successively
divided into subsets. It is necessary to determine the variable and the value of the split
point corresponds to the minimum value of the expression (4) obtained by analyzing all
input variables in the model and it serves as the point at which the division of space will
be performed [21–23].

min
j, s

min
c1

∑
xi∈R1(j, s)

(yi − c1)
2 + min

c2
∑

xi∈R2(j, s)
(yi − c2)

2

 (4)

where ĉ1= ave(yi |xi ∈ R1(j, s)) and ĉ2= ave(yi |xi ∈ R2(j, s)).
After finding the split variable j and the best split point s, the procedure is continued

by further splitting these areas until a certain stop criterion is met. This approach is said to
be greedy because at each step the best division is determined on the basis of the state in
the observed step, i.e., it does not consider how the division that takes place will perform
in the next steps and which division could result in better ones in the following steps.

After the segmentation of space into M areas R1, R2, . . . , RM, the model output for
a given test observation gives a value equal to the mean value of all observations of the
region to which the test sample belongs (Figure 4).

Figure 4. Example of the segmentation of variable spaces into regions and 3D regression surfaces for
the created regression tree [16].

When an individual tree model has poor generalization indicators on the test set, the
problem can be overcome by using a larger number of regression trees by using ensemble
techniques such as bagging, random forest, and boosting.
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With bagging algorithms, it is necessary to apply the method of bootstrap sampling or
sampling with replacement, so that a training set of the same size as the original is formed.
The procedure needs to be repeated several times or as many times as there are individual
models within the ensemble, so that each set of data generated in this way is used to create
one model of the regression tree [21–23].

The process of forming regression trees in the RF algorithm is based on the bootstrap
method similar to the bagging algorithm [24]. However, when regression trees are formed,
only a certain subset of variables is randomly selected, instead of using all available
variables or the total number of variables. Splits in the model are only performed on
these variables. If p is the total number of input variables or predictors in the training
data, the algorithm will narrow the selection to m = p / 3 variables when selecting a new
branching variable [21,25]. For each branching, a new random sample of variables is taken
into consideration.

By averaging all B individual models (for bagging and RF algorithm), a model is obtained
whose predictive function at point x is determined (Figure 5) by the following expression:

f̂ (x) =
1
B

B

∑
b=1

f̂ ∗b(x). (5)

Figure 5. Bootstrap aggregation (bagging) in regression tree ensembles [25].

In simple aggregation for the bagging and RF algorithm, the models are constructed
completely independently. The basic idea of gradient boosting is to build an ensemble by
adding a model per model (Figure 6), where each of the models is trained to compensate as
much as possible the weaknesses of the current set of models, i.e., to strengthen it. The basic
idea comes from gradient optimization methods, which are based on fixing the current
solution of the optimization problem by adding a vector proportional to the negative value
of the gradient of the function being minimized [26–28]. This makes sense, since a negative
gradient value indicates the direction of decreasing function. When the quadratic error
function is applied, the model reinforcement is implemented by each subsequent model
trying to approximate the residuals of previous models.
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Figure 6. Gradient boosting in regression tree ensembles [25].

2.3. Support Vector Regression (SVR)

If xi denotes the i-th element of an m-dimensional vector representing the inputs to the
model and yi denotes the corresponding answers to the values of the input vectors, their
values make up the following dataset {(x1, y1), (x2, y2), . . . , (xn, yn), } ∈ Rm × R.

The SVR algorithm can approximate an unknown function by tolerating errors within
the ε value or the so-called ε tube, but at the same time, there is a possibility to take into
account errors outside the ε tube by introducing linear loss function (Figure 7) defined by
the following expression [29,30]:

|y− f (x, w)|ε =


0 i f |y− f (x, w)| ≤ ε

|y− f (x, w)| − ε otherwise.
(6)

Figure 7. Nonlinear SVR with linear loss function with an ε-insensitivity zone.

For the case of a linear SVR model, the approximation function can be written as:

f (x, w) = 〈ω, x〉+ b, where ω ∈ X, b ∈ R (7)

where 〈ω, x〉 represents the scalar product.
The function of empirical risk that needs to be minimized is given by the following

expression (8):

Rε
emp(w, b) =

1
l

n

∑
i=1
|yi − f (x, w)|ε. (8)

The SVR algorithm minimizes the values of empirical risk Rε
emp and

∣∣∣∣w2
∣∣∣∣ at the same

time. By minimizing vector w, predictions are less sensitive to perturbations in features, i.e.,
outliers, and on the other hand, important features are selected, putting small coefficients
on those that do not contribute to the model. Taking into account the above, the problem is
reduced to minimizing the following function:

Rε
emp(w, b) =

1
l

n

∑
i=1
|yi − f (x, w)|ε. (9)
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subject to


yi − 〈ω, xi〉 − b ≤ ε + ξi
〈ω, xi〉+ b− yi ≤ ε + ξ∗i

ξi, ξ∗i ≥ 0
(10)

The constant C > 0 represents a parameter of the model that punishes errors greater
than ε and ξi and ξ∗i are the slack variables, as shown in Figure 7.

By introducing the Lagrange function with a dual set of variables, this problem can be
solved and the final solution can be written as:

ω =
n

∑
i=1

(αi + α∗i )xi and thus f (x) =
n

∑
i=1

(αi + α∗i )〈xi, x〉+ b (11)

where αi, αi
∗, and b are the parameters obtained by minimizing the error function.

In the case when the nonlinear function is approximated, the so-called kernel trick is
used, where it is necessary to map xi to a higher dimensional space using the mapping
Φ : x → Φ(x) ; hence, the scalar product can be replaced with k〈xi, x〉 = 〈Φ(xi), Φ(x)〉. The
final approximate function in this case becomes:

f (x) =
n

∑
i=1

(αi + α∗i )k〈xi, x〉+ b (12)

The most commonly used kernel functions are linear (13), polynomial (14) and
RBF (15), defined by the following expressions, respectively [31]:

〈kxi, x〉 = 〈xi, x〉 (13)

k〈xi, x〉 = exp
(
−γ||xi − x2||

)
, γ > 0 (14)

k〈xi, x〉 = tanh(γ〈xi, x〉+ r), γ > 0 (15)

2.4. Gaussian Process Regression (GPR)

This section introduces the GPR models which solve a regression task to find a
function that returns a real value, denoted as f: Rm 7−→ R for a given dataset in pairs
(x1, y1), (x2, y2), . . . , (xn, yn), where xi denotes the input vector and yi represents the
scalar value of the output [32].

An input x can be viewed as a location where an unknown function f that represents
a random variable is approximated. In the general case, domain R can be divided into
three disjoint sets, training set X, test set X∗, and the set of input values different from the
training and test set X0:

X =


x1
x2
x3
. . .
xn

, X∗ =


x∗1
x∗2
x∗3
. . .

x∗n∗

, X0 =


x01
x02
x03
. . .
x0n

 (16)

X is a vector of length n, X∗ is a vector of length n∗ and X0 is a vector of infinite length n0.
When modeling the values of possible values of the unknown function f at some

location X, it is assumed that it has the form of a Gaussian distribution function. A specific
value of the function represents only the random value of the unknown function f with
the corresponding probability. For each of the three previously mentioned disjoint sets
of inputs, there are corresponding output values: f (X), a vector of random variables of
length n, f (X∗), a vector of random variables of length n∗, and f (X0) a vector of random
variables of infinite length n0.

In GPR, a multivariate Gaussian distribution is used over the random variables f (X),
f (X∗), and f (X0), specified by a mean vector and a covariance matrix:
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The mean function m gives the expected value of those random variables, the mean
vector m(X) for random variable f (X) when x = X, the mean vector m(X∗) for random
variable f (X∗) when x = X∗, and the mean vector m(X0) for random variable f (X0) when
x = X0. In many modeling cases, satisfactory results are obtained by assuming that the
mean function m is equal to zero (or equal to some constant value) because the original
data can always be normalized to have a mean value of zero (or some constant value).

Additionally, it is necessary to define a covariance function k that occurs within the
covariance matrix, which is called the kernel function. The kernel function k is used
to determine the covariance between every two random values f (x) and f (x′) and it
represents one of the most important steps in the development of GPR models. One of the
most commonly used kernels is defined by the expression:

k
(
x, x′

)
= σ2exp

(
− (x− x′)2

2l2

)
(18)

in this expression, exp is the exponential function, l is called the lengthscale, and σ2 is the
signal variance. They are model parameters.

Based on the adopted kernel, all elements of the covariance matrix can be determined.
The matrix k (X, X) is of dimensionality n× n, the matrix k(X, X∗) is of dimensionality
n× n∗, and the matrix k(X∗, X∗) is of dimensionality n∗ × n∗.

The remaining five elements of the covariance matrix in equation (17) relating to
X0 (k(X, X0), k(X∗, X0), k(X, X0)

T , k(X∗, X0)
T , k(X0, X0), have infinite dimensions with

respect to infinite dimensionality X0, but due to the Gaussian marginalization rule, they
can be omitted and only the distribution over the random variables f (X) and f (X∗) (parts
from the joint probability density highlighted with blue boxes) can be considered. Joint
probability density over the random variables f (X) and f (X∗) is called prior and it can
also be written in the following form:

p
([

f (X)
f (X∗)

])
=

1

(2π)
n+n∗

2 det(K)
1
2

exp
(
−1

2

([
f (X)
f (X∗)

]
−
[

m(X)
m(X∗)

]))T

K−1
([

f (X)
f (X∗)

]
−
[

m(X)
m(X∗)

])
(19)

Let us now introduce the relationship between the random variable y(X) which
represents the observations and the random variable f (X) in the form of the following
expression:

p(y(X)| f (X) ) = N
(

y(X); f (X), η2 In

)
, (20)

where η2 is called noise variance and In is the identity matrix with size n× n.
The regression function y(X) can be written using the Gaussian linear transformation

form in the following way:

y(X)= In f (X) + ε , where ε ∼ N
(

0, η2 In

)
. (21)

Using the above formula and by applying the multivariate Gaussian marginalization
rule to expression (17), the distribution of the random variable y (X) can be obtained without
using f (X). By applying the Gaussian marginalization rule, the following expression
is obtained:

f (X) ∼ N(m(X), k(X, X)), (22)
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and then, by applying the Gaussian linear transformation rule resulting in:

y(X) ) ∼ N
(

m(X), K + η2 In

)
, (23)

Its probability density function is defined by the following expression (24) and is called
marginal likelihood:

p(y(X)) =
1

(2π)
n
2 det( K + η2 In)

1
2

exp
(
−1

2
(y(X)−m(X))

)T(
K + η2 In

)−1
(y(X)−m(X)). (24)

The marginal likelihood is a function of arguments: y(X) and the model parame-
ters

{
l, σ2, η2}. Determining the parameters of the model is done by maximizing this

expression. If the expression for marginal likelihood is logarithmized, identical results
are obtained by maximizing the previous expression for p(y(X)). For this reason, the
determination of model parameters is performed by applying gradient procedures to the
expression for log marginal probability.

In the next step, it is necessary to use the Bayesian method to calculate the posterior
from the prior and the likelihood. To calculate the posterior P( f (X∗)|y(X) ), the fact that
f (X∗) and y(X) are multivariate Gaussian random variables whose distribution is known
is taken into account. The distribution for f (X∗) is thus given by the following expression:

f (X∗) ∼ N(m(X∗ ), k(X∗ , X∗ ), (25)

the expression for the common distribution f (X∗) and y(X) can be written as:

p
([

f (X∗)
y(X)

])
= ∼

[
m(X∗ )
m(X)

]
,
[

k(X∗, X∗) k(X∗ , X)

k(X∗ , X)T k(X, X) + η2 In

]
. (26)

After applying the conditional rule for multivariate Gaussian, a distribution for the
posterior can be obtained:

f (X∗)|y(X) ∼ N
(

µ∗, σ2
∗

)
(27)

with the posterior mean and posterior covariance [32]:

µ∗ = m(X∗ ) + k(X∗ , X)
(
k(X, X) + η2 In

)−1
(y(X)−m(X))

σ2
∗ = k(X∗, X∗)− k(X∗ , X)

(
k(X, X) + η2 In

)−1k(X∗ , X)T (28)

The posterior for the observation random variable y(X∗)|y(X) is:

y(X∗)|y(X)= Iη∗( f (X∗)|y(X)) + ε∗ (29)

where ε∗ ∼ N
(
0, η2 In∗

)
, In∗ is the identity matrix of size n∗ × n∗.

By applying the multivariate Gaussian linear transformation rule, a distribution for
y(X∗)|y(X) can be obtained:

p
(

y(X∗)|y(X)) = N( Iη∗µ∗, In∗η
2
∗ In∗

T + σ2 In∗

)
= N(µ∗, σ2

∗ + η2 In∗) (30)

2.5. Artificial Neural Networks (ANNs)

The ANN can be described as the mathematical representation of parallel infor-
mation processing in a way similar to the human brain. The basic structural element
(Figure 8) of ANNs is the artificial neuron. The artificial neuron model consists of the
following elements:

1. A set of connections (synapses) where each connection has a certain weight;
2. A sum function where the input signals are collected;
3. Activation function, which limits the output of neurons.
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Figure 8. Nonlinear neuron model.

Each of the input signals (inputs) xj is multiplied by the corresponding weight wkj
before reaching the summation block, where the individual multiplied inputs are added
together and a bias is added to them. The output from the sum function is the input to the
activation function.

The output of the activation function is at the same time the output of neuron yk. In
the neuron model shown in Figure 8, the bias bk is included which has the function of
increasing or decreasing the input to the activation function. Mathematically, this can be
described by the following equations:

uk =
m
∑

j=0
wkjxj,

yk = ϕ(uk).
(31)

where x1, x2, . . . , xm are input signals, and wk1, wk2, . . . , wkm are the corresponding
weights for neuron k, where its bias has an assigned value of x0 = +1, and the correspond-
ing weight is denoted by wk0 = bk.

One of the most commonly used ANN models is the so-called multilayer perceptron—
MLP. An MLP is an ANN with forward signal propagation that consists of at least three
layers: an input layer, hidden layer, and output layer. The general structure of the MLP
model is given in Figure 9.

Figure 9. Multilayer perceptron artificial neural network (MLP-ANN).

The optimal number of neurons in the hidden layer depends on many factors, includ-
ing the number of inputs and outputs, the number of training pairs, the size of the noise in
the training pairs, the complexity of the error function, network architecture, and training
algorithm. One of the recommendations for adopting an upper limit for the number of
hidden layer neurons NH is the following expression [16,25]:

NH ≤ min
(

2NI + 1,
NS

NI + 1

)
(32)

where NI is the number of input layer neurons and NS is the number of training samples.
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The output provided by the network usually differs from the desired one, i.e., the
ANN model gives an error that is a function of the adjustable network parameters, i.e.,
the weight between the network neurons. A variant of the backpropagation algorithm
called the Levenberg-Marquardt (LM) algorithm was used to train the ANN model and its
detailed description can be found in [33].

The accuracy of a single neural network model when a smaller set of data is available
can be improved by training a larger number of ANNs and finding the average output value
of such a so-called ensemble model. For each of the individual ANN models within the
ensemble, an appropriate set of training data is required, which is formed by the Bootstrap
method, where a set of an identical number of samples is formed from the original set by
random selection with replacement.

The procedure is repeated until the appropriate number of ANN models within the
ensemble is reached. The output of the ensemble represents the mean value of the output
of the individual ANNs that form the ensemble.

3. Dataset

In order to form a CS prediction model for different ages of SCC samples with the
addition of Class F fly ash, it is necessary to form a sufficiently large set of test data of such
concrete. In this case, a database of tests of SCC samples from the published literature
was used [34–55]. The total number of tested samples used for modeling consisted of a
total of 327 tested samples with different ages of the tested sample from 1 day to 365 days.
Concrete constituents were analyzed as input variables: cement (C), water (W), Class F
fly ash (A), coarse aggregate (CA), fine aggregate (FA), superplasticizer (SP), and the
age of samples (AS). The output variable was the strength of such concrete at a cylinder
pressure of 100 mm × 200 mm expressed in MPa. The complete database is available as
Supplementary Materials (Supplementary Materials S1). The correlation matrix of model
variables is given in Figure 10.

Figure 10 indicates the correlation between model variables. Based on the value of
the correlation coefficient, it can be seen that in addition to a certain correlation between
compression strength as an output variable with some input variables (e.g., cement, sample
age, etc.), there is an intercorrelation between the input variables (e.g., superplasticizer to
fine aggregate ratio, the ratio of fly ash to cement, etc.). The application of machine learning
methods is extremely effective in modeling just such problems with intercorrelation. In
addition, histograms arranged along the main diagonal indicate the balance of the dataset.
All diagrams are automatically created by applying the corrplot built-in function (Matlab
2020a) to the attached dataset.

When applying different machine learning algorithms in order to define prediction
models, it is important to know the statistical indicators of the data used. The models that
are being formed generalize within the data on which the model training was performed.
The selection of the training and test dataset was implemented by first mixing the total
dataset using random permutations of samples using the built-in randperm function of
the Matlab program, and then randomly 80% of the samples for model training and 20%
for model testing. This 80:20 division of data is a standard procedure in machine learning
(Table 2). All analyzed models were trained on an identical training set, while the accuracy
of the model was assessed using the criteria root mean square error (RMSE), mean absolute
error (MAE), Pearson’s linear correlation coefficient ©, and mean absolute percentage error
(MAPE) on the identical test set.
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Figure 10. Correlation matrix of model variables.

Table 2. Statistical properties of variables used for modeling.

Statistical Analysis of Input and Output Parameters for All Data

Constituent Max. Min. Mean Mode St.Dev. Count

Cement (C) (kg/m3) 503 61.00 293.08 250.00 89.78 327
Water (W) (kg/m3) 390.39 132.00 197.00 180.00 37.62 327
Fly ash (A) (kg/m3) 373.00 20.00 170.23 160.00 69.68 327

Coarse aggregate (CA) (kg/m3) 1190.00 590.00 828.34 837.00 137.30 327
Fine aggregate (FA) (kg/m3) 1109.00 434.00 807.47 910.00 135.80 327

Superplasticizer (SP) (%) 4.60 0 0.980 0.50 1.11 327
Age of samples (AS) (days) 365 1 44.31 28.00 63.76 327

Compressive strength (MPa) 90.60 4.44 36.45 12.00 19.07 327

Statistical analysis of input and output parameters for Training set

Max. Min. Mean Mode St.Dev. Count

Cement (C) (kg/m3) 503.00 61.00 292.57 250.00 86.29 262
Water (W) (kg/m3) 390.39 133.20 197.83 180.00 39.09 262
Fly ash (A)(kg/m3) 373.00 20.00 169.40 160.00 67.80 262

Coarse aggregate (CA) (kg/m3) 1190.00 590.00 825.08 837.00 129.38 262
Fine aggregate (FA) (kg/m3) 1109.00 434.00 811.44 910.00 128.91 262

Superplasticizer (SP) (%) 4.60 0 0.98 0.50 1.10 262
Age of samples (AS) (days) 365 1 43.86 28.00 62.63 262

Compressive strength (MPa) 90.60 4.90 36.55 12.00 19.05 262

Statistical analysis of input and output parameters for Test set

Cement (C) (kg/m3) 503.00 61.00 295.11 295.11 103.36 65
Water (W) (kg/m3) 279.50 132.00 193.68 193.68 31.07 65
Fly ash (A)(kg/m3) 336.00 20.00 173.56 173.56 77.27 65

Coarse aggregate (CA) (kg/m3) 1190.00 590.00 841.48 841.48 165.95 65
Fine aggregate (FA) (kg/m3) 1109.00 434.00 791.43 791.43 160.74 65

Superplasticizer (SP) (%) 4.60 0 0.98 0.98 1.15 65
Age of samples (AS) (days) 365 1 46.09 46.09 68.61 65

Compressive strength (MPa) 72.61 4.44 36.02 4.44 19.32 65
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4. Results

In the MGGP method, different values of the number of genes and different depths
of trees that determine the complexity of the model were analyzed. The procedure itself
was iteratively repeated 10 times due to the random initiation of model parameters, and
the obtained models were eventually merged into one final population. In the training
procedure, the sum of RMSE values and the expression complexity of the model were taken
into account as a function of error. Setting the parameters is given in Table 3.

Table 3. Setting parameters for MGGP models.

Parameter Setting

Function set times, minus, plus, rdivide, square, exp, log,
mult3, sqrt, cube, power

Population size 100
Number of generations 1000
Max number of genes 6

Max tree depth 7
Tournament size 10

Elitism 0.05% of population
Crossover probability 0.85
Mutation probability 0.1

Probability of Pareto tournament 0.5

Models with 1–6 genes and the maximum tree depth varying from 1 to 7 were analyzed.
A model with four genes and maximum tree depth limited to six models was obtained with
the highest accuracy on the test dataset (Figure 11).

Figure 11. Comparison of different accuracy criteria for MGGP model as a function of gene number
and tree depth (a) RMSE, (b) MAE, (c) MAPE, and (d) R.

In this particular case, as a result of ten implemented iterations over 1000 generations, a
definite set of 1000 potential models was obtained. From the obtained models, models were
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analyzed that stand out in terms of the correlation coefficient and in terms of expression
complexity and form the so-called Pareto front (Figure 12).

Figure 12. Display of models that make up the Pareto front marked with green circles, while the
optimal model (Model ID 269) is marked with a red circle.

From the models that make up the Pareto front (Figure A2), five models can further be
distinguished in terms of accuracy expressed by the coefficients R2 whose values are 0.837,
0.842, 0.852, 0.860, and 0.865. These models are further analyzed because of their similar
accuracy and the significant difference in the complexity of the expressions themselves,
due to the separation of the most accurate and simplest expression. The accuracy of these
models in terms of defined criteria is given in the Table 4. The analysis showed that, in this
case, the most complex model (Model ID 269) is also the most accurate model.

Table 4. Comparison of performance measures for MGGP models.

Model ID RMSE MAE MAPE R

901 8.3826 6.3119 0.2437 0.9065
316 8.6407 6.5785 0.2578 0.9038
320 7.9860 6.2587 0.2444 0.9175
236 7.2654 5.7730 0.2411 0.9294
269 7.0962 5.6960 0.2409 0.9295

The analytical expression of the obtained optimal model for concrete strength (CS)
consists of four terms and a member representing bias:

σ = b + σ1 + σ2 + σ3 + σ4 = 74 + σ1 + σ2 + σ3 + σ4

σ1 = 0.0001(1.24A− 2.47C + 1.24CA + 2.3FA + 4.94W + 8.9)+ (0.000124C(CA + FA))/A

σ2 = 3.19 log(AS3/C3(C− 7.2)3(AS + 2.0C)3))

σ3 = 133SP− 133CA/(2SP− 2W)(W/ log(W)− 7.2)

σ4 = −0.00464SP
(

W + log(AS3
)
+

FA
A
− 7.2)

1
2

(
CA + FA− 3SP + 2W− FA log(CA)

SP−W

)
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For the methods based on decision trees, the application of both individual tree
models and models based on ensembles of individual models was analyzed. In the case
of individual models (Figure A1), trees of different depths were considered, which were
defined by the limitation in terms of the minimum number of data per terminal leaf, and
all individual models were evaluated in terms of the defined accuracy criteria. An optimal
model (Figure A1) with a limit of at least six data per terminal leaf was obtained (Table 5).

Table 5. Influence of minimum leaf size on regression tree (RT) model accuracy.

Min Leaf Size RMSE MAE MAPE R

1 9.5144 7.2558 0.2687 0.8873
2 9.5368 7.3382 0.2821 0.8780
3 9.0359 6.9911 0.2627 0.8873
4 9.4848 7.3640 0.2753 0.8775
5 9.6157 7.3791 0.2769 0.8747
6 8.8407 6.6424 0.2253 0.8942
7 9.7815 6.9879 0.2458 0.8685
8 10.1599 7.3942 0.2640 0.8569
9 10.9231 8.4503 0.3106 0.8283
10 10.7970 8.4804 0.3232 0.8312

When applying the TreeBagger (Figure 13) and RF (Figure 14) methods based on
decision trees, the following adaptive parameters were considered:

1. Number of generated trees B;
2. The minimum value of a leaf size (min leaf size) that represents the minimum amount

of data assigned to a leaf within the tree;
3. Number of randomly selected variables from the whole set of variables on which tree

splitting will be performed (RF method only).

Figure 13. MSE vs. number of trees in TreeBagger model for different minimum leaf sizes.
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Figure 14. Comparison of different accuracy criteria for RF model as a function of the number
of randomly selected splitting variables and minimum leaf size: (a) RMSE, (b) MAE, (c) MAPE,
and (d) R.

During the formation of the ensemble, 500 different datasets were generated from
the original dataset, and then a model was created on each of these generated sets. The
TreeBagger method uses all input variables when creating a model.

In the implementation of RF, it is recommended that the number of randomly selected
variables be approximately equal to one-third of the total number of variables, which in
most problems should lead to a satisfactory model. Such assumptions have been adopted
in the program implementation in the MATLAB 2020a program (default settings) [21,25].
In this case, it would mean the adoption of models which generate regression trees using
two or three variables out of the seven variables, which is not fully accepted in this
study. A significant number of models were analyzed using a randomly selected subset
of 2, 3, 4, 5, and 6 variables, and the analysis included the evaluation of the model using
RMSE, MAE, R, and MAPE criteria.

The analysis of a specific dataset showed that the usually recommended values of a
random selection of a subset of two or three variables according to which tree splitting
would be performed are not optimal. Additionally, the default setting of a minimum
number of five data per terminal leaf is not optimal in terms of defined criteria. According
to the three criteria RMSE, MAE, and MAPE, the selection of the whole set of variables
when creating trees gives the model significantly higher accuracy, while with regard to
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the criterion R, this difference is less pronounced. Furthermore, the analysis showed that,
in this case, the creation of deep trees (min leaf size = 1) provides models with greater
accuracy in terms of all criteria. The case of selecting the whole set of seven input variables
in Figure 14 corresponds to the TreeBagger model, which for the given case gives the
highest accuracy of prediction.

Regarding the number of trees that make up the ensemble in the TreeBagger model, it
can be seen from Figure 13 that a significant number of basic models is needed to achieve the
correct accuracy and that the learning curve is saturated at approximately 250 basic models.

The boosting trees method combines binary regression trees using a gradient boosting
technique. Creating a model goes sequentially. The following model parameters (Figure 15)
were analyzed:

• Number of generated trees B;
• Reduction parameter λ (learning rate);
• Number of splits of the tree d.

Figure 15. Dependence of the MSE value on the reduction parameter λ and the number of trees (base
models) in the boosted trees model: (a) the maximum number of splits is limited to 16 and (b) the
maximum number of splits is limited to 64.

A number of values of reduction parameters were investigated in this paper as follows:
0.001; 0.01; 0.1; 0.5; 0.75, and 1.0. Additionally, tree models were generated that had
restrictions on the maximum number of splits of 20 = 1, 21, 22, 23, 24, 25, 26, 27, 28 = 256.

The MSE criterion was used as the criterion of optimality. After model training, all
obtained models were analyzed using RMSE, MAE, MAPE, and R criteria on a test dataset.
In terms of defined criteria, two models stood out: model 1 (boosted trees 1 model) whose
parameters are the max number of splits d = 16 and learning rate = 0.5 which is optimal in
terms of RMSE and R criteria; model 2 (boosted trees 2 model) with parameters being the
max number of splits d = 64 and learning rate = 0.5, which are optimal in terms of MAE
and MAPE criteria. For both models, the minimum number of data per terminal leaf is five.

With all ensemble models, it is possible to see the importance of individual input
variables on the accuracy of the model. This analysis was performed on the Treebager
model and the boosted trees models. The obtained values are displayed in Figure 16.
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Figure 16. Significance of individual variables in TreeBagger and boosted trees models.

When applying the SVM method, the application of three different kernels was ana-
lyzed: linear, RBF, and sigmoid kernel.

When preparing data for all analyzed models, all input values were transformed into
the range [0, 1], i.e., linear data transformation was performed. The values of the output
target vector were also scaled into same range. When estimating the model, the values
of all variables were rescaled and the performance of the model was determined using
accuracy criteria. The RMSE value as the optimality criterion was used for the selection
of parameters in all models. The process of finding the optimal parameters of the model
was implemented using LIBSVM [56] through two phases, the rough search phase and the
detailed search phase, using the grid search method.

In the case of a linear kernel function, there are no unknown parameters of the function
itself, and the use of the function was reduced to finding the values of the scalar products
of the input vectors. However, for the development of the model, it was necessary to
determine the value of C of the penalty parameter as well as the values of the insensitivity
zone of model ε.

For the RBF kernel, within the function itself, it was necessary to determine parameter
γ (the width of the Gaussian curve bell), the value of C of the penalty parameter, and the
values of the insensitivity zone ε.

In the sigmoid kernel function, in the general case, two unknown parameters γ and
r appear; in addition to the development of the model, it was necessary to determine the
value of C of the penalty parameter and the values of the insensitivity zone of the model ε.
In accordance with the recommendation in the paper [52], it is assumed that the value of
the parameter r is equal to zero.

A similar procedure with the appropriate range of values was applied to all analyzed
kernels in the rough parameter search phase:

• When applying the linear kernel in this study, the values for parameter C in exponential
order in the range C =

[
2−10, 2−9, . . . , 20, . . . , 29, 210] were examined as well as the

values for the parameter ε in the range ε =
[
2−10, 2−9, . . . , 20, 21];

• For the RBF kernel, the values for parameter C in the exponential order
in the range C =

[
2−10, 2−9, . . . , 20, . . . , 29, 210], the values of γ in the range

γ =
[
2−10, 2−9, . . . , 20, . . . , 29, 210], as well as the values for the parameter ε in the

range ε =
[
2−10, 2−9, . . . , 20, 21] were examined;

• For the sigmoid kernel, the values for the parameter C in the exponential order in the range
C =

[
2−10, 2−9, . . . , 20, . . . , 29, 210], γ in the range γ =

[
2−10, 2−9, . . . , 20, . . . , 29, 210],

as well as the values for the parameter ε in the range ε =
[
2−10, 2−9, . . . , 20, 21] were

examined. A value of zero was adopted for the value of the parameter r (r = 0) in
accordance with the recommendation [56];

• All possible combinations of parameters within the above ranges were analyzed.

In the phase of detailed search, a narrow search was performed in the area of the
obtained optimal solution of rough search. The procedure was limited to 100 iterations.
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During each iteration, the value of the search steps decreased. The lower limit of the search
area was obtained by decreasing the optimal value of the parameter from the previous
iteration by the value of the steps from the previous iteration, and the upper limit by
increasing the optimal value from the previous iteration by the value of the steps from the
previous iteration. The procedure is repeated until the specified number of iterations is
reached (Table 6).

Table 6. Values of optimal kernel function parameters in the SVM method.

SVM linear C = 0.1428 ε = 0.0436 /

SVM RBF C = 17.6919 ε = 0.0412 γ = 2.1220

SVM sigmoid C = 252.3998 ε = 0.0547 γ = 9.1574

In GPR, kernel functions determine the covariance between two latent variables f (xi)
and f

(
xj
)

where both vectors xi and xj are dimensions d × 1. Kernel functions show how
much the output or response of the system at some point xi is affected by the response of
the system at some point xj, i 6= j, j = 1, 2, . . . , n.

The influence of the covariance function k
(

xi, xj
)

in this paper was examined using
different functions that are parameterized, using standard signal deviation σf (output)
and one length scale parameter σl or more length scale parameters σl , l = 1, 2, . . . , m if
different parameters of the distance scale for different coordinate axes for ARD functions
are analyzed.

The data for model development are first standardized in the paper. By the standard-
ization procedure, which was carried out by columns, the data were transformed to have a
mean value of zero and a variance equal to one. The application of the model with constant
base function was analyzed. In the process of finding the optimal GPR model, two groups
of covariance functions were analyzed, namely:

1. Covariance functions that have one length scale parameter for all input variables
(exponential, quadratic-exponential, Matérn 3/2, Matérn 5/2, rational square);

2. Covariance functions that apply different length scale parameters to input variables
(ARD covariance functions).

The parameters of the analyzed covariance functions were determined using gradient
procedures on the expression for log marginal probability.

Analysis of the application of a total of 10 different covariance functions (Tables 7 and 8)
showed that more accurate models are obtained by applying ARD functions. The model
with ARD exponential function proved to be the optimal model, which is better than other
models in terms of the three defined criteria RMSE, MAE, and R. In terms of criteria, MAPE
is the second-ranked model, but the difference is 0.006647 compared to the first-ranked one
and can practically be ignored.

The values of the length scale parameters for individual input variables can be used to
assess the significance of these variables in terms of their impact on model accuracy. The
significance of individual variables is inversely proportional to the size of these parameters.
For the optimal model with the ARD SE covariance function, the logarithms (with base 10)
of the length scale parameters are shown in Figure 17.

In the application of ANN models, different models of MLP neural network with one
hidden layer were investigated, wherein neurons with a tan sigmoid activation function in
the hidden layer were used, and neurons with a linear activation function were used in the
output layer.
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Table 7. Values of optimal parameters in GPR models with different covariance functions.

GP Model Covariance Function Covariance Function Parameters

Exponential
k
((

xi, xj |Θ
))

= σ2
f exp

[
− 1

2
r
σl

2

]
σl = 31.24 σf = 54.56

Squared exponential
k
((

xi, xj |Θ
))

= σ2
f exp

[
− 1

2
(xi−xj)

T
(xi−xj)

σl
2

]
σl = 1.71 σf = 29.25

Matérn 3/2
k
((

xi, xj |Θ
))

= σ2
f

(
1 +

√
3r

σl

)
exp
[
−
√

3r
σl

]
σl = 4.17 σf = 41.74

Matérn 5/2
k
((

xi, xj |Θ
))

= σ2
f

(
1 +

√
5r

σl
+ 5r2

3σl
2

)
exp
[
−
√

5r
σl

]
σl = 2.68 σf = 34.12

Rational quadratic
k
((

xi, xj |Θ
))

= σ2
f

(
1 + r2

2aσl
2

)−α
; r = 0

σl = 3.05 a = 0.22 σf = 47.62

where r =
√(

xi − xj
)T(xi − xj

)
.

Table 8. Values of optimal parameters in GPR ARD models with different covariance functions.

Covariance Function Parameters

σ1 σ2 σ3 σ4 σ5 σ6 σ7

ARD exponential:

k
((

xi, xj

∣∣∣Θ)) = σ2
f exp(−r); σF= 64.78; r =

√
∑d

m=1
(xim−xjm)

2

σm2

109.27 61.97 97,176.47 74.09 24.72 31.09 10.95

ARD squared exponential:

k
((

xi, xj

∣∣∣Θ)) = σ2
f exp

[
− 1

2 ∑d
m=1

(xim−xjm)
2

σm2

]
;σf = 32.48

4.12 3.35 7.92 6.31 3.29 0.48 1.12

ARD Matérn 3/2:
k
((

xi, xj

∣∣∣Θ)) = σ2
f

(
1 +
√

3r
)

exp
[
−
√

3r
]
;σf = 25.12

4.61 2.33 5649.90 3.39 0.97 1.37 0.48

ARD Matérn 5/2:
k
((

xi, xj

∣∣∣Θ)) = σ2
f

(
1 +
√

5r + 5r2

3

)
exp
[
−
√

5r
]
;σf = 30.34

4.23 4.86 8.88 6.91 3.99 0.70 0.53

ARD rational quadratic:

k
((

xi, xj

∣∣∣Θ)) = σ2
f

(
1 + 1

2α ∑d
m=1

(xim−xjm)
2

σm2

)−α

; α= 30.34; σf = 51.96

4.45 1.97 18,417.04 4.87 1.08 5.89 0.57

where r =

√
∑d

m=1
(xim−xjm)

2

σm2 .
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Figure 17. Variable importance using optimal ARD exponential covariance function.

A value of 15 neurons was adopted for the value of the upper limit of the number of
neurons in the hidden layer,

NH ≤ min
(

2× 7 + 1 = 15,
327

7 + 1
= 40.9

)
= 15.

All model variables were transformed into the interval [−1, 1], where the correspond-
ing minimum value was mapped to -1 and the corresponding maximum value to 1, and
linear scaling was used for the values in between. The setting of the model parameters is
shown in Table 9.

Table 9. Parameter settings applied during ANN model calibration in MATLAB.

Parameter
Parameter Value

Lower Limit Upper Limit

Number of epochs / 1000

MSE value (performance) / 0

Gradient / 1.00 × 10−7

The value of the parameter λk (Mu) 0.005 1.00 × 1010

The architecture of the input and output layer is defined by the problem being modeled,
i.e., in this case, the number of neurons in the input layer is seven, and the number of
output layers is one. The optimal number of neurons in the hidden layer according to
the 3 criteria RMSE, MAE, and R is 12 (Figure 18). The model that has 14 neurons in the
hidden layer is optimal according to the MAPE criterion, but this difference compared to
the previously mentioned model is only 0.0016.

Using bootstrap sampling with replacement, a large number of different datasets from
the original set were formed, and then individual models of ANNs were formed over these
datasets. As such, an ensemble of ANNs was formed, the prediction of which is the average
value of individual models. With the formation of the ensemble, all criteria for the accuracy
of the model (Figures 19–21) were significantly improved. The comparison of all analyzed
machine learning models is given in Table 10.
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Figure 18. Comparison of the accuracy criteria for MLP-ANNs with different numbers of neurons in
the hidden layer: (a) RMSE and MAE; and (b) R and MAPE.

Figure 19. Comparison of accuracy criteria for the ensemble with a different number of individual
ANN models within the ensemble: (a) RMSE and MAE; and (b) R and MAPE.
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Figure 20. (a) RMSE value for each of the iterations; and (b) the optimal number of neurons in the
hidden layer in each of iteration.

Figure 21. Comparative analysis of anensemble of ANNs (blue color) and individual ANN
models (yellow color) in relation to target test values (red color) for SCC with Class F fly ash
compressive strength.
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Table 10. Comparative analysis of results of different machine learning models.

Model RMSE MAE MAPE/100 R

MGGP 7.0962 5.6960 0.2409 0.9295

Decision tree 8.8407 6.6424 0.2253 0.8942
TreeBagger 7.0236 5.5892 0.2387 0.9378

Random forest 6.9324 5.5627 0.2379 0.9389
Boosted tree 1 5.9597 4.8307 0.1793 0.9518
Boosted tree 2 6.3814 4.5410 0.1580 0.9237

SVM linear 12.7268 10.6332 0.5323 0.7495
SVM RBF 5.9533 4.5551 0.1976 0.9521

SVM sigmoid 12.6875 10.4926 0.5242 0.7511

GP exponential 6.7391 5.3043 0.2313 0.9376
GP Sq.exponential 6.5298 5.0244 0.2117 0.9429

GP Matérn 3/2 6.3409 4.7695 0.1909 0.9454
GP Matérn 5/2 6.3686 4.7852 0.1943 0.9452

GP Rat. quadratic 6.4138 4.8693 0.1970 0.9439
GP ARD exponential 5.9891 4.4334 0.1625 0.9517

GP ARD Sq. exponential 6.2278 4.6602 0.1739 0.9506
GP ARD Matérn 3/2 6.2476 4.6911 0.1559 0.9481
GP ARD Matérn 5/2 6.4760 4.5837 0.1632 0.9463

GP ARD Rat. quadratic 6.2025 4.6228 0.1560 0.9494

ANN 8.8034 6.6700 0.2783 0.8978
Ensemble ANN 5.6351 4.3665 0.1734 0.9563

The selection of the optimal model in Table 10 was made on the basis of four criteria.
The RMSE and MAE criteria are absolute indicators of the accuracy of the model and are
expressed in the same units as the output variable, which in this case is MPa. The RMSE
criterion is a criterion that is more representative of the accuracy of the model in relation
to the extreme values within the dataset, while the MAE is an indicator of the absolute
accuracy of the model. The R and MAP criteria are relative criteria that are dimensionless.
In this particular case, the ensemble model can be considered optimal because it achieves
the best values of three indicators compared to the four defined. The optimal model consists
of individual models created in iterations. In each iteration, a sample of the same size as
the original is formed using bootstrap aggregation, different architectures that can have
up to 15 neurons are examined, and a model with the optimal architecture in the current
iteration joins the ensemble. This process is repeated iteratively until the learning curve is
saturated. As such, the accuracy of an individual model is significantly increased.

5. Conclusions

This paper describes a number of state-of-the-art machine learning methods that can
be used to predict CS in SCC with the addition of Class F fly ash. The paper discusses the
application of MGGP, RT, and ensembles based on RTs, TreeBagger, random forest, and
boosted tree models, SVM models with linear, RBF, and sigmoid kernels, GPR models,
models of individual ANN, and ensembles composed of individual ANN models.

This paper presents a detailed procedure for determining the optimal parameters for
all analyzed models and determines the accuracy of each model in terms of the defined
criteria of RMSE, MAE, R, and MAPE. The analyzed models indicated the importance of
individual input variables on the accuracy of the model and the positive effect of fly ash on
the CS of concrete.

Based on a respectable database of performed tests from the literature, both individual
models and ensemble models were analyzed and the accuracy in terms of defined criteria
was assessed. The advantage of using an ensemble of neural networks and GPR models
that were not used in the discussions in the cited literature was pointed out. In addition,
less accurate but more transparent individual MGGP and RT models were analyzed and
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compared to widely used ANN models. Both models provide the relationship of individual
constituents with the compressive strength of SCC concrete. The MGGP model provides
this relationship with the aid of an equation while the RT model provides this relationship
in the form of a simple tree structure, which in some cases, is important for operational
implementation. Findings in the paper allow several industries to model their own mix in
less time without any money invested in it. In terms of the three defined criteria, RMSE,
MAPE, and R, the model of an ensemble of ANNs stood out as an optimal model with
values of 5.6351 MPa, 4.3665 MPa, and 0.9563, respectively. As this is a model that predicts
the SC for different ages of concrete from 1 to 365 days, the achieved accuracy of the
model can be considered satisfactory. The application of bootstrap aggregation led to a
significant increase in accuracy compared to the individual ANN model. The expansion of
the database could further improve the accuracy of the obtained model.

GPR models with the ARD exponential function showed quite similar and slightly
worse accuracy, with a value of 4.4334 MPa for MAE criteria. This model, thanks to the
ARD property, has the ability to determine the significance of individual variables on the
accuracy of the prediction model.

From the individual analyzed models, the MGGP model could be singled out as useful
because the model provides an explicit expression that can be used in the prediction of
concrete of different ages. The accuracy in terms of defined absolute criteria RMSE and
MAE is 1.46 MPa and 1.33 MPa less than the optimal ensemble of neural networks model,
respectively. The defined RT model, although much simpler, gave almost the same accuracy
as the optimal individual NN model.
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Figure A2. MGGP models that form the Pareto front.
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Malazdrewicz, S. A Comparative Study for the Prediction of the Compressive Strength of Self-Compacting Concrete Modified
with Fly Ash. Materials 2021, 14, 4934. [CrossRef]

19. De-Prado-Gil, J.; Palencia, C.; Silva-Monteiro, N.; Martínez-García, R. To predict the compressive strength of self compacting
concrete with recycled aggregates utilizing ensemble machine learning models. Case Stud. Constr. Mater. 2022, 16, e01046.
[CrossRef]

20. Searson, D.P.; Leahy, D.E.; Willis, M.J. GPTIPS: An Open Source Genetic Programming Toolbox for Multigene Symbolic Regression.
In Proceeding of the International MultiConference of Engineers and Computer Scieintist Volume I, IMECS 2010, Hong Kong,
China, 17–19 March 2010.

21. Hastie, T.; Tibsirani, R.; Friedman, J. The Elements of Statistical Learning; Springer: Berlin/Heidelberg, Germany, 2009.
22. Breiman, L.; Friedman, H.; Olsen, R.; Stone, C.J. Classification and Regression Trees; Chapman and Hall/CRC: Wadsworth, OH, USA, 1984.
23. Breiman, L. Bagging predictors. Mach. Learn. 1996, 24, 123–140. [CrossRef]
24. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
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