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Abstract: The Old City of Dubrovnik’s historical urban heritage architecture, consisting of poorly
to well-built irregular stone masonry construction, is at high risk of earthquakes. It was enlisted
as a UNESCO World Heritage after the severely damaging 1979 Mw = 7.1 Montenegro earthquake.
Retrofitting strategies to a certain degree of earthquake protection have been made to the monument
heritage architecture after repeating destructive earthquakes for several centuries. The originally
13th-century Rector’s Palace underwent several major modifications throughout history after dis-
astrous events: fire in 1435, a gunpowder explosion in 1463, and earthquakes in 1520, 1667, and
1979. The design and construction information were collected from historical records and studies
performed by various researchers, including field measurements and laboratory tests. Based on the
data gathered, the building’s resistance to destructive earthquakes in compliance with contemporary
building codes was determined using simulations on a calibrated spatial structural model. The
study revealed that the building’s critical parts are most susceptible to a certain degree of damage
or even collapse. The presented case study is the basis for decision-making and implementing the
building’s earthquake risk reduction measures. Additionally, it will serve as a guide for earthquake
risk evaluation on similar buildings, even though they may differ in degree or detail.

Keywords: Rector’s Palace; Old City of Dubrovnik; heritage architecture; stone masonry construction;
destructive earthquakes; retrofitting; earthquake performance

1. Introduction

The destructive Mw = 5.3 and Mw = 6.4 earthquakes that struck Croatia in 2020 [1–4]
not only caused significant physical damage to buildings and loss of life [5,6] but also posed
a grave threat to the country’s rich cultural heritage assets [7–10]. By drawing insights from
these events that shed light on the consequences of earthquakes on heritage preservation
efforts and the measures taken to mitigate such risk, the vulnerability at both urban and
single asset scales in the Old City of Dubrovnik (see Figure 1) was explored to subsequent
exposure, i.e., the effect of destructive earthquakes. The Old City is enlisted as a UNESCO
World Heritage Site [11] after a very destructive 1979 Mw = 7.1 Montenegro earthquake
of extreme intensity in the vicinity of the epicenter, i.e., IMCS,MAX = IX–X, and of very
strong intensity, i.e., IMCS = VII in Dubrovnik. The earthquake damage report indicated that
1071 registered cultural heritage assets suffered considerable damage (see Figure 2). In com-
pliance with the Croatian Earthquake Catalogue (developed in 1996 [12] and continuously
updated), the Old City of Dubrovnik was exposed to past significant earthquake events,
namely: heavily damaging, i.e., IMCS = VIII earthquakes in 1520 and 1639, destructive or
heavily destructive, i.e., IMCS = IX–X earthquake in 1667. The consequences of the latter,
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also known as the “Great Dubrovnik Earthquake”, are in the rank of the 1775 Lisbon,
Kingdom of Portugal, and the 1908 Messina, Kingdom of Italy, earthquakes [13].
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Figure 1. Old City of Dubrovnik: (a) a view of the city from the southeast; (b) a street view in the 
residential part with the former Jesuit College in the distance; (c) a street view of City Hall, Rector’s 
Palace and the Cathedral (courtesy of the Institute for the Restoration of Dubrovnik [14]). 

Figure 1. Old City of Dubrovnik: (a) a view of the city from the southeast; (b) a street view in the
residential part with the former Jesuit College in the distance; (c) a street view of City Hall, Rector’s
Palace and the Cathedral (courtesy of the Institute for the Restoration of Dubrovnik [14]).

The urban historical heritage architecture in the Old City consists of residential and
public buildings, among which are the monumental buildings of outstanding significance
and value, such as, e.g., Rector’s Palace, Sponza Palace, City Hall, Jesuit College, etc.
(see Figure 3). The categorical weakness of built heritage, with reference to the seriousness
of destructive earthquake occurrence, is in its (irregular) construction comprising massive
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unreinforced natural stone masonry of different quality of wall texture (including the
confining fortification ramparts, i.e., walls). In addition, they were built with poor lime
mortar, and with the floor structures comprised of wooden joists, masonry vaults, arches,
and domes with an inadequate inter-connection with the rest of the structure, which is
unsuitable for areas of high seismicity (highest in Croatia [15]), where the city is located.
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measured in the city (legend by color: white = negligible to slight damage; green = moderate damage; 
yellow = substantial to heavy damage (structural damage); red = very heavy damage or destruction) 
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before 1989 (colored in blue) after the very destructive 1979 Mw = 7.1 Montenegro earthquake of very 

Figure 2. Map of the Old City of Dubrovnik showing the grade of damage to buildings after the
very destructive 1979 Mw = 7.1 Montenegro earthquake of very strong intensity, i.e., IMCS = VII
measured in the city (legend by color: white = negligible to slight damage; green = moderate damage;
yellow = substantial to heavy damage (structural damage); red = very heavy damage or destruction)
(publicly available at URL: https://zod.hr/obnova-dubrovnika/potres-1979-i-aseizemicka-sanacija/;
accessed on 2 June 2023).

In order to adequately regulate and conduct the restoration program (strengthening
or replacement) and to gather the necessary and substantial financial resources required, a
package of laws and regulations was enacted [16–21], among which was the establishment
of the Institute for the Restoration of Dubrovnik in 1979 [14]. The ongoing restoration
(1979–present day), interrupted by the war in Croatia (1991–1995), included various experts,
such as civil engineers, geologists, seismologists, architects, art historians, surveyors,
archeologists, and others, due to the considerable difficulty and complexity of the problem.
The restoration (retrofitting) effort (1979–1989) and 1996–present-day referred to building
codes of the period such as [22] 1981–1999 and [23] 1999–2012, which, if compared to
contemporary construction in compliance with [24,25] could provide 30–50% or 70–100%
of required earthquake resistance, respectively. The retrofitting strategies employed, in
general, consisted of the removal, replacement, or addition of RC walls in critical places,
the execution of horizontal confining elements and RC slabs, and the addition of steel tie
rods or steel bracings.

https://zod.hr/obnova-dubrovnika/potres-1979-i-aseizemicka-sanacija/
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Figure 3. Map of the Old City of Dubrovnik showing the retrofitted historical monumental buildings
before 1989 (colored in blue) after the very destructive 1979 Mw = 7.1 Montenegro earthquake
of very strong intensity, i.e., IMCS = VII measured in the city (publicly available at URL: https:
//zod.hr/obnova-dubrovnika/potres-1979-i-aseizemicka-sanacija/; accessed on 2 June 2023).

Based on the comprehensive data gathered, including the recent experimental and theo-
retical scientific laboratory and field research, the historical monument Rector’s Palace’s per-
formance to destructive earthquakes in compliance with contemporary building codes [24,25]
was determined using simulations on a calibrated spatial structural model through a finite
element macro-modeling approach and the response spectrum analysis.

Considered were the site [26] and seismic hazard characteristics [11,12,15] in the
region, building classification (vulnerability class B in pre- and C in post-retrofitting design
condition in compliance with EMS-98 [27] and fragility concepts [28,29]), its structural
characteristics, and the contemporary building code requirements [24,25,30].

The study indicated that the building’s critical parts were the most susceptible to some
degree of damage or collapse, which coincided with the building’s damage survey after
past earthquakes (e.g., 1979 Mw = 7.1 Montenegro earthquake) and its measured vibrational
characteristics. A similar approach to historical (masonry) buildings, as compared to other
methods, e.g., [31,32], has been exercised by [33–37] and supported by the conclusions
of [38]. The presented preliminary case study, conducted in the framework of the Croatian
Science Foundation Research Project IP-2020-02-3531 Seismic Risk Assessment of Cultural
Heritage Buildings in Croatia, due to the building’s complex architecture, as well as
the design and construction approach [39], is the basis for the further detailed analysis,
decision-making, and implementation of the building’s earthquake risk reduction measures.
Additionally, as a result of numerous building constructions, it will serve as a guide for
earthquake risk evaluation on similar buildings in Dubrovnik’s Old City, even though they
may differ in degree or detail (e.g., former Jesuit College building [37]).

The main objectives and contributions of this study are the following: (a) to assess
and compare the earthquake performance and vulnerability of a UNESCO-listed cultural
heritage building, namely the Rector’s Palace in Dubrovnik’s Old City, in its pre- and post-
retrofitting (1982–1984) design condition, i.e., survivability, by means of a finite element

https://zod.hr/obnova-dubrovnika/potres-1979-i-aseizemicka-sanacija/
https://zod.hr/obnova-dubrovnika/potres-1979-i-aseizemicka-sanacija/
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macro-modelling approach and response spectrum analysis; (b) to gather and classify the
relevant mechanical characteristics of stone masonry buildings in the observed region,
with regard to locally available historical materials used and the craftsmanship of their
construction by considering the laboratory tests and available literature; (c) to validate the
building’s post-retrofitting design conditions with reference to contemporary building code
earthquake performance (and vulnerability) requirements, thus indicating the building’s
critical parts most susceptible to a certain degree of damage or even collapse; and (d) to
emphasize the importance of testing the historical masonry building’s dynamic proper-
ties in the process of structural macro-model calibration in order to support their global
assessment to destructive-earthquake-related risk.

The novelty of this study is in providing insight into the effectiveness of the retrofitting
measures implemented in a particular cultural heritage stone masonry building in Dubrovnik’s
Old City after a very destructive 1979 Mw = 7.1 Montenegro earthquake in the period from
1982 to 1984 with reference to contemporary building code requirements and the building’s
pre-retrofitting design condition.

The overall aim is to find an affordable means of avoiding irretrievable damage to
heritage structures in design-level earthquake shaking, e.g., 475-year hazard level [40–42].
Achieving this would not only be of great value to Dubrovnik City, i.e., owners of property
subjected to destructive earthquakes, but could also make an important contribution to the
sustainability of the built heritage [43,44], a matter of great importance to the community
and its identity [45,46].

This study is organized in the following manner. The earthquake-related risk and
damage to the built environment of Dubrovnik’s Old City and the risk reduction measures
are presented in Section 1. The overview of the historical urban development of the Old
City, defining its architectural, art, and historical significance and value as a UNESCO
cultural heritage, is described in Section 2. Section 3 describes the design, construction,
and retrofitting of Rector’s Palace, while Sections 4 and 5 provide information on the
building’s construction materials and vibrational characteristics, respectively. Section 6 is
about the structural assessment and performance of the Rector’s Palace with reference to
contemporary building code requirements, i.e., earthquake demands, accompanied by a
discussion in Section 7. Section 8 summarizes the main objectives and findings of the study,
with indications for future work.

2. Historical Urban Development of the Old City

The Old City of Dubrovnik (lat. Ragusium), a trade and port city located in the
southernmost part of Croatia (in the historical region of Dalmatia), on the eastern coast
of the Adriatic, was founded in about 615. It consisted of two settlements separated by
shallow sea embayment, i.e., the one built on the mainland with a Slavic population named
Dubrava and the other named Ragusium with a Latin (Roman) population. The settlements
merged by embanking the embayment, what today represents the main city street named
Stradun. The city was named Dubrovnik by its mainland settlement.

The city was under the suzerainty of the Byzantine Empire (615?–1205) and Venice
Republic (1205–1358) till the foundation of the historically famous sovereign state Republic
of Ragusa (1358–1806/8). It permanently lost its sovereignty under the French Empire and
the Kingdom of Italy (1806–1815). Afterward, it became a part of the Triune Kingdom of
Croatia, Slavonia, and Dalmatia, i.e., Austrian (1815–1867) and Austro-Hungarian Empire
(1867–1918). The Yugoslavian period (1918–1991) lasted up to the declaration of indepen-
dence of the Republic of Croatia (formerly one of the Socialist Republics of Yugoslavia),
to which it belongs up to this day. The Republic of Ragusa is historically famous for its
notable achievements in diplomacy and maritime trade, as it is considered one of the major
ports and trade routes in the Mediterranean between the Levant and the rest of Europe,
reaching even up to India and the United States. This was particularly pronounced during
the Ottoman suzerainty (1451–1684), where it had exclusive trade rights, protection, and
safety by the Ottomans within the Empire, therefore being a competitor to the Republic
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of Venice. The motto of the Republic was Non bene pro toto libertas venditur auro, which
translates to Liberty is not sold for all the gold in the world.

The Old City, confined with stone masonry fortification ramparts, is a unique urban
entity that successfully preserved its historical form and meaning. In compliance with the
contemporary urban plan (see Figure 4), the city comprises residential and public buildings.
The buildings were adapted to the contemporary requirements according to their purpose.
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Figure 4. Urban plan of the Old City of Dubrovnik from 1982 (legend by color: yellow = resi-
dential buildings; pink = cultural; blue = management, administration, and economy; red and
brown = tourism and stores) [47,48].

In general, the building stock has deteriorated due to inappropriate maintenance and
the inability of the elderly population (private ownership) to bear the costs of renovation,
which is also contributed by the demanding works and procedures for obtaining approval
for construction projects. In addition, damage caused during the earthquake and inap-
propriate internal modifications of buildings also contribute to it. The Old City is treated
as the cultural center and attractive tourist destination, apart from its administrative and
residential content.

3. Design, Construction, and Retrofitting of Rector’s Palace

The Rector’s Palace in the Old City of Dubrovnik (see Figures 5–8) is a building of
outstanding world historical and cultural heritage significance and value. It is included in
the UNESCO World Heritage List [49] immediately after the 1979 Mw = 7.1 Montenegro
earthquake caused structural damage to the building. In history, it was used as the seat of
government and residence of the Rector, the highest political function in the Republic of
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Dubrovnik (1358–1808), while today it serves as a museum. It is located on the edge of the
eastern part of the Old City next to the city ramparts and the port (see Figures 2–4).
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Figure 6. Facades of the Rector’s Palace with historical architectural details: (a) east; (b) south first;
(c) south second; (d) north and (e) west façade view (courtesy of the Institute for the Restoration
of Dubrovnik).
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Figure 7. Selected cross-sections of the Rector’s Palace: (a) “2-2”; (b) “3-3”; (c) “6-6”; (d) “9-9” as
specified in original architectural drawings (courtesy of the Institute for the Restoration of Dubrovnik).
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Figure 8. Floor plans of the Rector’s Palace after 1982–1984 retrofitting showing added/replaced
(in red color) and removed (in blue color) stone masonry structural walls with reference to a pre-
retrofitting design condition: (a) ground floor; (b) first floor including the position and the direction
of the instruments used for ambient vibration measurements; (c) mezzanine; (d) attic (courtesy of the
Institute for the Restoration of Dubrovnik).

The building was first mentioned as a castrum in 1272 and in 1296 as a castellum,
and its original design was in accordance with its military purpose [47,48]. In 1349, it
was mentioned as palatium and palazzo maggior. After the fire in 1435, it was severely
damaged and then restored until 1443, according to the designs of Italian architect Onofrio
di Giordano della Cava. In 1463, due to a gunpowder explosion, part of the building
collapsed and caught fire, and the building was then restored to its present appearance by
Italian architect Salvi di Michele.

The soil beneath the building consists of condensed sand and clay of medium and high
plasticity with a thickness of 13–27 m (up to the bedrock). The groundwater (freshwater)
level is about 1.5 m beneath the surface and about 0.75 m above the sea level. The building
is founded on a strip masonry foundation of roughly dressed stone. The vertical structural
system consists of three-layered stone masonry walls with a thickness of 0.45–1 m. The
outer layers are from finely dressed stone and lime mortar, while the central fil is made
from a large number of stone chippings and fill material with the addition of lime mortar.
In compliance with the building code valid in the period of retrofitting 1982–1984 [22] and
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with the contemporary building codes [25], the building is highly irregular in plane and
elevation. The floor structures of a pre-retrofitted building consisted of wooden joists and
stone vaults.

The mound of material above the vaults reaches even 0.5 m, while in several places,
the vaults are illogically formed due to the modifications from past interventions. The vault
thickness is about 0.25 m.

The earthquakes of 1520 and 1639 of severe intensity IMCS = VIII damaged parts of
the building, while the earthquake of 1667, estimated at a violent and extreme intensity
of IMCS = IX–X [11,12,50], caused very heavy structural damage to the building but not its
collapse [13]. The first documented post-earthquake retrofitting, during which, in addition
to repairs, multiple steel ties were installed, was completed in 1704, when the baroque
atrium was built at the same time (see Figure 5b,c). In 1843, steel ties were introduced
on the western facade, but several rough construction interventions also damaged the
structural form of the palace. In 1952, additional interventions were carried out at the
palace, which were aimed at improving its state. Prompted by warnings resulting from the
Mw = 6.2 1962 Makarska earthquake (severe to violent intensity IMCS = VIII–IX) [51–53], in
the period from 1968 to 1974, detailed investigative work was carried out at the palace on
the initiative of the Institute for the Protection of Cultural Monuments in Dubrovnik. In the
1979 Montenegro earthquake, the Rector’s Palace was significantly damaged. Structural
walls were separated from the floor structures and partition walls with cracks in the vaults,
including tilting of the facades. The retrofitting began in 1982 and ended in 1984. It is
described in detail in [13], and the basic information about the locations and approach of
retrofitting is given here.

The retrofitting of 1982–1984, performed in compliance with building code [22] de-
mands, ensured the interconnectivity of structural components (as possible within the
available budget). Before the retrofitting, cracks were observed throughout the building.
Masonry walls were erected in places where they were previously removed (see Figure 8),
i.e., in 1843, while several partition walls were removed. Steel anchors ensured the connec-
tivity between the existing and newly built walls. The walls were connected horizontally in
three levels by slabs and cross-beams, e.g., the foundation, first floor, and mezzanine level.
The masonry strip foundations were strengthened by adding RC beams next to them and
by connecting them with steel anchors. The earthquake dilatations were added in contact
with the neighboring buildings (see Figure 7). By the post-retrofitting design performed
(equivalent static load method), and by taking into account the unknowns, it was concluded
that the building would not be structurally damaged in case of an IMCS = VIII intensity
earthquake; however, the building code demanding resistance [22] to an earthquake of an
IMCS = IX intensity was not fulfilled. The building could be structurally damaged but will
not collapse (as supported by the post-earthquake damage surveys after past strong and
moderate earthquakes).

4. Construction Materials

The construction material of the built heritage in the Old City of Dubrovnik (and the
eastern Adriatic coast) consists primarily of high-quality crafted limestone blocks sourced
from nearby quarries. Other construction materials used are lime mortar, timber, and bricks.
The built heritage of stone masonry generally does not conform with the design criteria and
construction rules for earthquake-resistant buildings or building walls of EN 1998-1:2004
and EN 1996-1-1:2005 building codes [24,25], in particular, besides the period of construction,
due to a lack of adequate floor structure and the floor–wall connection [54,55]. Although
natural stone masonry units may fulfill the required criteria (compressive strength nor-
mal fb ≥ fb,min = 5 MPa, and parallel to bed joints fbh ≥ fbh,min = 2 MPa, respectively), the
structural walls do not, due to the poor quality of lime mortar used (compressive strength
fm < fm,min = 5 MPa) and the construction methodology/approach varieties (irregularities).

An extensive experimental and theoretical research program on natural stone masonry
buildings and building walls (and constituent materials) of the Balkan peninsula was
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performed by [54,55] and presented in Figures 9–11. Prior to this program, earlier research
by [56,57] resulted in experimental data on stone masonry walls and seismic (horizontal)
shear force capacity design methodology.
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Figure 9. Compressive strength of natural stone masonry walls made with lime mortar, f (MPa),
belonging to the eastern Adriatic coast with reference to the corresponding compressive strength of
masonry units, fb (MPa), in correlation with the quality of the wall texture (high, medium, and low)
and reference values for historical buildings as given by [54,55,58,59].
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Figure 10. Compressive strength of natural stone masonry walls made with lime or cement–lime
mortar, f (MPa), belonging to the eastern Adriatic coast with reference to wall classification (A–E)
as proposed by [54,55] where letter symbols refer to (A) designated walls made of finely dressed
and properly arranged stone blocks, without intermediate layers; (B) walls made of large regularly
dressed stone blocks with a relatively narrow central layer filled with fill material and stone chippings;
(C) walls made of large irregularly dressed stone blocks with a relatively narrow central layer filled
with fill materials and stone chippings; (D) walls made of roughly dressed irregular stone blocks with
a large number of stone chippings and fill material in the central layer, and with irregular joints; and
(E) walls made of undressed stone with a large quantity of fill.
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Figure 11. Modulus of elasticity of natural stone masonry walls made with lime mortar, E (MPa),
belonging to the eastern Adriatic coast with reference to corresponding wall compressive strength,
f (MPa), from test results, as given by [54,55,60–64].

Figure 9 shows the compressive strength of natural stone masonry walls made with
lime mortar, f (MPa), belonging to the eastern Adriatic coast with reference to the corre-
sponding compressive strength of masonry units, fb (MPa), in correlation with the quality
of the wall texture (high, medium, and low) and reference values for historical buildings
as given by [54,55,58,59]. The walls are of high-quality texture, finely dressed stone ma-
sonry with an intermediate layer of fill. Based on the relations shown in Figure 9, the
lower and upper limits of the compressive strength of stone masonry walls are 2.2 and
14.6 MPa [54,55]. The upper and lower values for historical buildings of 2.0 and 8.0 MPa,
respectively, also stated in Figure 10, refer to (lime) mortar strength fm < 2.5 MPa.

In addition, Figure 10 shows the compressive strength of natural stone masonry walls
made with lime fm < 2.5 (MPa) or cement–lime mortar, 2.5 < fm < 5.0 (MPa), belonging to
the eastern Adriatic coast with reference to wall classification (A–E) as proposed by [54,55]
where letter symbols refer to (A) designates walls made of finely dressed and properly
arranged stone blocks, without intermediate layers; (B) walls made of large regularly
dressed stone blocks with a relatively narrow central layer filled with fill material and stone
chippings; (C) walls made of large irregularly dressed stone blocks with a relatively narrow
central layer filled with fill materials and stone chippings; (D) walls made of roughly
dressed irregular stone blocks with a large number of stone chippings and fill material in
the central layer, and with irregular joints; and (E) walls made of undressed stone with
a large quantity of fill. According to the EN 1996-1-1:2005 [24] building code, the wall
compression strength estimate is based on the constituent contribution, i.e.,

fk = Kfb
0.7fm

0.3 (1)

where K is constant with a value of 0.45 for dimensioned natural stone; fb is normalized
compressive strength of a masonry unit; and fm is the compressive strength of a mortar,
ranging from 1.83 MPa (for fb = 5 MPa and fm = 2.5 MPa) to 8.8 MPa (for fb = 35 MPa and
fm = 5.0 MPa), which corresponds to limits shown in Figure 9 as defined in [54,55].

The references [13,58,59,63,65,66] are particularly related to the characteristics of the
Rector’s Palace construction. The earthquake design requires the appropriate modulus of
elasticity E, which can also be expressed in terms of compressive strength f of masonry walls
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(B class in the case of Rector’s Palace). The modulus of elasticity, besides the structure’s
mass, is critical in the calculation of the natural frequency of the building and, therefore, the
earthquake performance. The adequate modulus elasticity was determined by structural
model calibration with reference to measured natural frequencies. The initial, i.e., orien-
tation values of the modulus of elasticity of natural stone masonry walls made with lime
mortar, E (MPa), belonging to the eastern Adriatic coast with reference to corresponding
wall compressive strength, f (MPa), from test results, as given by [54,55,60–64], are shown
in Figure 11 and Table 1. As proposed by [54,55], and based on Figure 11 and Table 1
information, the lower limit (referring to walls of low-quality texture) of the modulus
of elasticity can be expressed as E = 650 × f (MPa), while the upper limit (referring to
walls of high-quality texture) as E = 900 × f (MPa), which is lower than the prediction
E = 1000 × f (MPa) given in the EN 1996-1-1:2005 [24] building code. The corresponding
value of stone masonry wall shear modulus G ranges from E/6 to E/4. In addition, the
recommended values of stone masonry wall tensile strength ft range from 0.09 to 0.3 MPa
in relation to corresponding compressive strength ranging from 2.0 to 8.0 MPa, respectively.

Table 1. Mechanical properties of natural stone masonry walls belonging to the eastern Adriatic coast
obtained by experiments from different researchers [54,55].

Experimental Research Reference Comp. Strength, f (MPa) Elastic. Modulus, E (MPa) Shear Modulus, G (MPa)

Tomažević & Sheppard (1983) [60] 2.0 2.5 2025 2100 650 850 870

Tomažević & Sheppard (1986) [62] 4.0 2400 400

Stanković (1986) [61] 2.0 4.0 6.0 1715 2785 3636 384 627 1245

Tomažević (1990) [64] 6.5 4652 488

Tomažević (1992) [59] 3.0 1956 304

Aničić (1989) [58,59] 3.0 6.0 1840 4300 350 950

5. Building’s Vibrational Characteristics

The vibrational characteristics of the Rector’s Palace were determined via ambient
vibration measurement performed by the Institute of Earthquake Engineering and Engi-
neering Seismology (abbr. IZIIS) of the Saints Cyril and Methodius University in Skopje,
FYR Macedonia, Yugoslavia (today’s North Macedonia) in 1981, prior to the building’s
retrofitting, as described in [67] (see Figure 12).

The measurement was undertaken in order to support the earthquake performance
explanation of the building, as well as retrofitting strategies, by providing data for accurate
prediction of earthquake-caused stress distribution in a structural model. At the time of
measurement, the building had noticeable cracks in walls and ceilings visible from inside
the building due to damage caused by the 1979 Mw = 7.1 Montenegro earthquake. The
measurement was conducted using the “Ranger” model SS-1 seismometers (Kinemetrics,
Pasadena, CA, USA). The measurement positions and directions are shown in Figure 8b.
The results were presented in the form of Fourier spectra with noticeable natural frequencies
of the building. The frequencies of potentially external (transient) excitations (not belonging
to the structure itself) were removed by averaging the Fourier spectra, which distinguished
the permanent frequencies. For illustration purposes, Figure 12a–c shows the averaged
Fourier spectra for N-S and E-W directions and torsion appearance. From Figure 12a–c, the
frequency of 2.80 Hz is clearly noticeable in the N-S direction, 2.67 Hz in the E-W direction,
and 4.13 in torsion. Besides the distinguished peaks of the spectra, a multitude of peaks
represent the natural frequencies of the individual structural components of the building.
The dominant resonant frequencies fn in Hz (and periods Tn in s) obtained using ambient
vibration measurement are given in Table 2.
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Figure 12. Example of Fourier amplitude spectra obtained via ambient vibration measurement in
Rector’s Palace for (a) N-S direction, (b) E-W direction, and (c) torsion, as given in [67].
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Table 2. Dominant resonant frequencies fn in Hz (and periods Tn in s) obtained using ambient
vibration measurement in Rector’s Palace prior to retrofitting [67].

Direction
Dominant Resonant Frequencies fn in Hz (and Periods Tn in s)

f1 (T1) f2 (T2) f3 (T3) f4 (T4) f5 (T5) f6 (T6) f7 (T7) f8 (T8)

N-S 2.80 (0.36) 3.33 (0.30) - 5.20 (0.19) 6.08 (0.17) 7.74 (0.13) 11.07 (0.09) 23.36 (0.04)
E-W 2.67 (0.38) 3.20 (0.32) 4.00 (0.25) - 5.87 (0.17) 7.47 (0.13) - 23.20 (0.04)

Torsion - - 4.13 (0.24) 5.07 (0.20) - 7.60 (0.13) 12.51 (0.08) 23.68 (0.04)

By inspection of the averaged Fourier spectra (Figure 12a–c), it was observed that
the dominant resonant frequencies of the building are within the range of 3.0 to 5.0 Hz,
which corresponds well to the expected values of the dominant (period) frequency range
of earthquake action, i.e., 0–5 Hz [68], and poses a risk to a building. More specifically
(see Table 2), in terms of natural periods, the dominant period of the earthquake action
of 0.3–0.4 s could cause very heavy damage or destruction of the building. This also
corresponds to Type 1 and Type 2 elastic response spectra peak values used to represent the
seismic action by EN1998-1:2004 [25]. The wooden joists used for floor structures (2nd floor
in a post-retrofitted building) were indirectly represented in the model by weight, i.e., as
the loading on the supporting walls, including the corresponding permanent and variable
loads acting on the floor [69]. The concrete class C25/30, namely elasticity modulus,
Ecm = 31 GPa [30], was adopted for the RC slabs in the mezzanine and the first floor
in the post-retrofitted building. The direct modeling of the wooden joists, e.g., wooden
beams with their exact geometry semi-hinged to supporting walls, was avoided because
their contribution to the overall earthquake resistance of the building is ideally 10 to 30%
compared to the building with “absolutely rigid floor structures” [54,55]. The building
considered is in fact a historical building with diminished structural capacity caused by
its use, aging, and several major earthquakes and other disastrous events throughout
its history. Therefore, with their omission in the model the most unfavorable building’s
structural response overall and, in particular, of structural walls was obtained.

6. Structural Assessment and Performance

The overall earthquake performance of the Rector’s Palace in the Old City of Dubrovnik,
Croatia, a cultural heritage building that was retrofitted in 1982–1984 and later (see Section 3),
was assessed by a preliminary spatial finite element linear–elastic macro-modelling ap-
proach and the response spectrum analysis, in computer program SCIA ENGINEER [70]
(see Figure 13). Performance was assessed with reference to contemporary building code
requirements [24,25,30,71,72] via a calibrated spatial structural finite element model to
determine its structural weaknesses and protection level against strong earthquakes. Con-
sidered were the return period of 95 (probability of exceedance 10% in 10 years), 225
(probability of exceedance 20% in 50 years), and 475 years (probability of exceedance 10%
in 50 years) in compliance with the Earthquake Hazard Maps of Republic of Croatia [15,73],
which correspond to limit states of damage limitation (DL), significant damage (SD), and
near collapse (NC), respectively [72]. The overall assessment preliminary structural model
is used as an indicator for strengthening the intervention aimed at improving the earth-
quake behavior of the building as a whole, as well as by individual components. The
soil–structure interaction effects were not considered in the analysis, i.e., the rigid base
(foundation) connection to ground type A [25] vs,30 > 800 m/s, namely rock or other
rock-like geological formation, including at most 5 m of weaker material at the surface
of the region, was assumed, which provides the most unfavorable outcomes with regard
to design criteria. Adopted is the finite element mesh size of 0.5 m after performing the
mesh sensitivity study with 0.25, 0.5, and 1.0 m mesh sizes. The calibration of the model
was performed based on the pre-retrofitted building’s condition (before retrofitting of the
1982–1984 period) against the value of the average value of the N-S and E-W value of the
fundamental period, i.e., T1 = 0.37 s (see Table 2).
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Figure 13. Finite element model of Rector’s Palace built in a computer program SCIA ENGINEER [70]:
(a) southwestern view and (b) northeastern view of the building.

The finite element mesh sensitivity study resulted in the following building’s fun-
damental period T (s) values (with the corresponding finite element size): T1 = 0.375 s
(size of 1.0 m), T1 = 0.37 s (size of 0.5 m), and T1 = 0.3698 s (size of 0.25 m). The model
comprised (with adopted meshing) 47,980 2D (3-node triangular and 4-node quadrilateral
isoparametric shell elements) and 2068 1D (2-node beam finite elements) with 45,945 mesh
nodes in total.

With regard to the pre- and post-retrofitting structural model, the main differences
were in the addition and removal of structural stone masonry walls, as shown in Figure 8,
and in enabling the rigid wall–slab connection (and diaphragm) assumed for walls that
were connected horizontally in three levels by reinforced concrete slabs and cross-beams,
e.g., on the first floor, and in mezzanine level (in place of wooden joists in a pre-retrofitting
design condition, which were not considered directly in the model in the pre-retrofitting
design condition). The latter was not implemented over the vaults (see Figure 13).

The calibration was performed using the elasticity modulus of masonry walls of class
B (see Section 4), which was found to have an overall mean value of about E = 1900 MPa
for the whole building. After calibration, the model was upgraded in order to take the
retrofitting of 1982–1984 and later into account (see Section 3). It was found that there is
a slight decrease in the first average (N-S and E-W direction) fundamental period from
T1 = 0.37 s (f1 = 2.72 Hz) to T1 = 0.34 s (f1 = 2.96 Hz), as shown in Figure 14. The connection
of the structural interventions with the rest of the building is adopted among other parts
of the structure without the introduction of special approaches to modeling, i.e., as a
perfect connection.
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f1 = 2.72 Hz, WEW,1/WEW,tot = 3.6%, and WNS,1/WNS,tot = 10.0%; (b) post-retrofitted condition
T1 = 0.34 s, f1 = 2.96 Hz, WEW,1/WEW,tot = 0.58%, and WNS,1/WNS,tot = 18.0%.

The following quantities were considered as loads to the building: permanent action (G): self-
weight of the mound above vaults = 14 kN/m3; self-weight wooden joists = 8 kN/m3; self-weight
roof (structure and tiles) = 5.8 kN/m3; self-weight of masonry construction = 25 kN/m3;
variable action (Q): museum (C3 category) = 5 kN/m3; roof = 0.75 kN/m3; seismic action
(A): type 1 response spectrum; soil type A (see Table 3); damping ratio 0.05. The importance
factor for the building selected is γI = 1.4. The seismic combinations used are stated in
Table 4. The results of structural analysis are given in Figures 15–18 in the form of mode
shapes (twelve considered), spatial displacements and principal compressive and tensile
stresses indicating the path and pattern of potential structural damage and its prevailing
direction. The analysis is aimed at determining the critical building parts and revealing
the structural weaknesses with reference to expected earthquake action. The building is
considered un-damaged for analysis purposes.

Table 3. The seismic action definition parameters are in compliance with [15,25].

Ref. Return Period
(Years) Importance Factor γI

Reference PGA
agR (g) DGA ag (m/s2)

95
1.4

0.16 2.20
225 0.22 3.02
475 0.30 4.12

Table 4. The seismic combinations applied to the structural model of the Rector’s Palace are in
compliance with [71,72].

Load Combination 1—LC1 Load Combination 2—LC2

∑G + EEd,x + 0.30EEd,y + ∑Ψ2Q ∑G + 0.30EEd,x + EEd,y +∑Ψ2Q
Ψ2 = 0.3 for variable action of the building category C1.
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The initial value of behavior factor q = 1.5 is adopted based on the building code [24,25]
criteria and recommendations for unreinforced masonry construction in low seismicity
cases that correspond to a pre-code, i.e., historical building construction practice. A seem-
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ingly conservative approach was adopted by assuming the same value of behavior factor
for pre- and post-retrofitting design conditions mainly for comparison reasons.

The influence of various design factors, such as construction material, structural form,
and excitation, on earthquake performance and vulnerability of the building, which are
mutually dependent, are discussed in the following section.

7. Discussion

The overall earthquake performance of the Rector’s Palace in the Old City of Dubrovnik,
Croatia, a cultural heritage building, was assessed with reference to contemporary building
code requirements [25,72] via a calibrated spatial structural finite element model in order
to determine its structural weaknesses and protection level against strong earthquakes.
Considered were the return period of 95 (probability of exceedance 10% in 10 years), 225
(probability of exceedance 20% in 50 years), and 475 years (probability of exceedance 10%
in 50 years) in compliance with the Earthquake Hazard Maps of Republic of Croatia [15,73]
(see Figure 19), which correspond to limit states of damage limitation (DL), significant
damage (SD), and near collapse (NC), respectively [72].

Sustainability 2023, 15, x FOR PEER REVIEW 21 of 29 
 

behavior factor for pre- and post-retrofitting design conditions mainly for comparison 
reasons. 

The influence of various design factors, such as construction material, structural 
form, and excitation, on earthquake performance and vulnerability of the building, which 
are mutually dependent, are discussed in the following section. 

7. Discussion 
The overall earthquake performance of the Rector’s Palace in the Old City of 

Dubrovnik, Croatia, a cultural heritage building, was assessed with reference to 
contemporary building code requirements [25,72] via a calibrated spatial structural finite 
element model in order to determine its structural weaknesses and protection level against 
strong earthquakes. Considered were the return period of 95 (probability of exceedance 
10% in 10 years), 225 (probability of exceedance 20% in 50 years), and 475 years 
(probability of exceedance 10% in 50 years) in compliance with the Earthquake Hazard 
Maps of Republic of Croatia [15,73] (see Figure 19), which correspond to limit states of 
damage limitation (DL), significant damage (SD), and near collapse (NC), respectively 
[72]. 

In comparison with the corresponding building code response spectrums, Figure 19 
shows the response spectrum of the 1979 Mw = 7.1 Montenegro earthquake [74,75] 
recorded at Herzeg Novi station in the N-S direction (at a 50 km distance from 
Dubrovnik’s Old City) for behavior factor q = 1.0, the building’s fundamental periods in 
the N-S and E-W directions, i.e., T1,NS and T1,EW, respectively. The geology and soil 
conditions of the Montenegrin and Croatian coasts in the observed area have matching 
characteristics. As seen in Figure 19, the measured fundamental frequencies (periods) of 
the building in the NS and EW direction, namely, T1,NS = 0.36 s and T1,EW = 0.38 s, comply 
with the highest demand represented by the building code and the 1979 Mw = 7.1 
Montenegro earthquake response spectrum. 

 

Figure 19. Response spectrum of Type 1 for reference return periods, TNCR, of 95, 225, and 475 years 
[25], respectively, and of the Mw = 7.1 1979 Montenegro earthquake [74,75] recorded at Herzeg Novi 

Figure 19. Response spectrum of Type 1 for reference return periods, TNCR, of 95, 225, and
475 years [25], respectively, and of the Mw = 7.1 1979 Montenegro earthquake [74,75] recorded
at Herzeg Novi station in the N-S direction for behavior factor q = 1.0 (at a 50 km distance from
Dubrovnik’s Old City) with the corresponding building’s measured pre-retrofitting fundamental
periods in the N-S and E-W directions, i.e., T1,NS and T1,EW, respectively.

In comparison with the corresponding building code response spectrums, Figure 19
shows the response spectrum of the 1979 Mw = 7.1 Montenegro earthquake [74,75] recorded
at Herzeg Novi station in the N-S direction (at a 50 km distance from Dubrovnik’s Old
City) for behavior factor q = 1.0, the building’s fundamental periods in the N-S and E-W
directions, i.e., T1,NS and T1,EW, respectively. The geology and soil conditions of the
Montenegrin and Croatian coasts in the observed area have matching characteristics. As
seen in Figure 19, the measured fundamental frequencies (periods) of the building in the
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NS and EW direction, namely, T1,NS = 0.36 s and T1,EW = 0.38 s, comply with the highest
demand represented by the building code and the 1979 Mw = 7.1 Montenegro earthquake
response spectrum.

Consequently, the earthquake-related risk to the whole built heritage of Dubrovnik’s
Old City is relatively high, as evident from seismic microzoning earthquake intensity ma
(in compliance with the Mercalli–Cancani–Sieberg (MCS) scale) shown in Figure 20 and
damage map in Figure 2.
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Figure 20. Seismic microzoning earthquake intensity map of the Old City of Dubrovnik in compliance
with the Mercalli−Cancani–Sieberg (MCS) scale (publicly available at URL: https://zod.hr/obnova-
dubrovnika/potres-1979-i-aseizemicka-sanacija/; accessed on 22 September 2023).

The overall assessment preliminary structural model is used as an indicator for
strengthening the intervention aimed at improving the earthquake behavior of the building
as a whole, as well as by individual components. The building belongs to vulnerability class
B in pre- and C in post-retrofitting design conditions in compliance with EMS-98 [27] and
its structural characteristics and contemporary building code requirements [24,25,30]. The
masonry construction of Rector’s Palace (in the floor plans (see Figures 8–11)) is represented
by layered walls whose thickness is approx. 40 ≤ tef ≤ 100 cm (i.e., tef,min = 35 cm [25]), i.e.,
class B. One can wrongly assume that by increasing thickness, the resistance of a building’s
earthquake performance improves. This, however, in the case of stone masonry, depends
on the cross-section, e.g., masonry wall classification A–E with reference to texture quality
and compressive strength, as shown in Figure 10. More research is required before the
effect of the thickness of different masonry wall classifications on a building’s earthquake
performance is completely described.

In considering the frequencies of vibration obtained from the field measurements,
besides the building’s (dominant) natural frequencies (see Table 2 and Figure 15), the
ones from the individual structural components or structural parts could be observed
(see Figure 12), which is an indicator of the poor structural inter-connectivity or damage.
However, eight modes were observed by measurements, which was helpful for assessing
the model by performing its calibration and validation. The total effective mass participa-
tion for the first six modes of vibration corresponds to approximately 30% in the EW and
25% in the NS building’s direction, respectively. In order to reach higher mass participation,

https://zod.hr/obnova-dubrovnika/potres-1979-i-aseizemicka-sanacija/
https://zod.hr/obnova-dubrovnika/potres-1979-i-aseizemicka-sanacija/
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the calculation of a large number of modes, i.e., approximately 200 modes, is required to
reach 90% of the total mass participation in both horizontal directions.

The performance of the structure was evaluated using the linear elastic approach
(and by assuming its inelastic behavior in other terms such as behavior factor). While the
linear approach is adequate for structural response analysis, it is unable to represent actual
modes of failure compared to non-linear analysis (e.g., direct integration time–history
analysis, etc.). Additionally, the limitation of the model was that as well as in the design
practice, once calibrated against the fundamental period and validated against higher
mode periods, it assumed the mean value of the elasticity modulus was equal for the
whole structure. In order to subsequently confirm the accuracy of the structural model, it is
advisable to carry out the ambient vibration measurements on the existing structure.

The earthquake performance and vulnerability were assessed quantitatively (via the
displacement and stress levels) and qualitatively (via the volume affected by damage)
using the spatial displacement and principal stress distribution. In Figure 16, the spatial
displacement distribution indicates the near collapse (out-of-plane) limit state (d = 50 mm;
dr = 4% with reference to htot) at the top of the western façade (above arcades). The
principal tensile stresses, σ1 (MPa), shown in Figure 17a,b, indicate the values exceeding
the tensile strength, ft, ranging from 0.09 to 0.3 MPa [54,55] (see Section 3), at all limit
states, i.e., damage limitation (DL), significant damage (SD), and particularly near collapse
(NC). The principal compressive stresses, σ2 (MPa), shown in Figure 18a,b, by referring
to the highest expected compressive strength value for historical masonry construction
of f = 8.0 MPa, indicate the damageability even at the damage limitation (DL) state, as
they vary between the limit states by the volume affected by damage (50% of volume at a
near-collapse (NC) state).

The damage evolution based on principal tensile stress, σ1 (MPa), observation in Figure 17a,b
at return periods TNCR = 95 (ag/g = 0.16), 225 (ag/g = 0.21), and 475 (ag/g = 0.30) years
(see Figure 21), reveals that in spite of the interventions applied to atrium’s vertical struc-
tural elements (namely, stone columns and masonry walls) the adjacent stone vaults still
remain the most vulnerable building part to earthquakes, even for the damage limita-
tion (DL) limit state design requirements, i.e., TNCR = 95 (ag/g = 0,16). Considering the
corresponding increased return period principal tensile stress values, i.e., at TNCR = 225
and 475 years, besides the building’s atrium, the vulnerability of arcades (western façade)
becomes evident and highly sensitive to out-of-plane failure (see also Figures 16b and 22b).
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The distribution of principal compressive stresses, σ2 (MPa) in Figure 18a,b con-
firms the regions of critical exposure to earthquakes (achieving the highest permissible
values, i.e., f = 8 MPa) at observed limit states as seen in Figure 17a,b, namely, atrium
at TNCR = 95 (ag/g = 0.16) and arcades at TNCR = 225 (ag/g = 0.21), also indicating the
possibility of compressive crushing of stone columns and masonry walls.

The occurrence of structural damage, based on Figures 16–18, is expected at the atrium
and arcades (western façade), which is recognized as a building’s vulnerability in surveys
from past strong earthquakes. The data shown in Figures 16–18 confirm the necessity of
strengthening interventions (past and future) with the purpose of reducing the building’s
exposure to strong earthquakes, particularly when dealing with buildings of outstanding
cultural heritage significance and value.

In order to ensure the preservation of the most vulnerable parts of the building and
to collect information about the irregular geometry of the atrium and arcades, 3D laser
scanning was performed with a Leica BLK terrestrial scanner (see Figure 22) [76].

The collection of data using a 3D laser scanning technique was required due to the
complexity of the form of observed building parts and their art and architectural value and
for the accuracy of the computational model geometry.

In computational modeling of historical urban architecture, consisting of poorly to well-
built regular or irregular masonry construction, the assessment of earthquake performance
using two, or (preferably) three-dimensional finite [77,78] or discrete [79,80] element micro-
or macro-models (linear and non-linear), is the most efficient, comprehensive and revealing
approach available. It has a major advantage in easily allowing changes in a building’s
structural and material characteristics and a straightforward relation with its measured
vibrational characteristics for the purpose of model calibration.
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8. Conclusions

The restoration of Dubrovnik’s Old City has been performed continuously from 1979
after the Mw = 7.1 Montenegro earthquake up to today, with an interruption during the
Homeland War period between 1991 and 1995. The Rector’s Palace (1272–today) is a
cultural heritage building of outstanding significance and value and was listed in 1979
as a UNESCO World Heritage Site. The building underwent several reconstructions and
retrofitting during its life period triggered by various hazardous events such as explosions,
fires, and earthquakes.

Based on the preliminary case study performed on the overall earthquake performance
of the pre- and post-retrofitting design of Rector’s Palace before 1982 and after 1984,
respectively, the following conclusions were made:

• Historical seismicity (more than ten past earthquakes of IMCS ≥ VIII intensity) and
geology (sea embayment with shallow deposits of sand and clay) were considered in
order to perform a credible analysis of the building’s earthquake vulnerability with
reference to contemporary building code demands (for return periods T = 95, 225, and
475 years);

• Building retrofitting performed in the past (the most significant in the period between
1982 and 1984) based on codified, inadequate, or non-codified approaches vary through
arbitrary or partial measures to thorough earthquake design criteria implementation
(with reference to the building code of the period) and reveal the potential of building
damage in the account of the earthquakes expected in the region;

• Due to the difficulty and complexity of the task regarding restrictions imposed on
observed UNESCO-listed heritage buildings to perform experiments in situ, the bib-
liography resources were used to assess the construction material and vibrational
characteristics, with estimates of the range of their validity on the observed and simi-
lar unreinforced stone masonry buildings, most of them related to the period of the
post-1979 Montenegro earthquake restoration period;

• The aforementioned material and structural characteristics were crucial in establishing
the modeling strategy, e.g., finite element structural macro-modeling approach and
response spectrum analysis, and employed in the development and calibration of
the model;

• The earthquake damage evolution, at each of the prescribed design limit states, high-
lighted the heritage building’s structural weaknesses, namely the atrium, and arcades,
as the most vulnerable parts of the building;

• In order to preserve their art form and geometry, in case of damage and for future
restoration purposes due to the high risk of earthquakes, the 3D laser scanning data
collection was performed and assessed.

Based on the outstanding value and importance of the Rector’s Palace, and by con-
sidering the consequences of its damage or collapse, the current lack of data on its overall
earthquake performance, the case study conducted is a ground basis for creating measures
against destructive earthquakes expected in the region, as evident by historical records.

It provides a basis for future more detailed finite or discrete (linear or non-linear)
element damage and failure analyses of the building or its parts the most susceptible to a
certain degree of damage or even collapse and their retrofitting possibilities.
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Geosciences 2020, 10, 252. [CrossRef]
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