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Abstract: The construction industry has been significantly transformed by the implementation of
Building Information Modeling (BIM), which has facilitated extensive project management capabili-
ties across the entire life cycle. Notwithstanding its advantages, there exist certain limitations that
hinder its extensive implementation. This study aims to investigate the disparities related to the
adoption of Building Information Modeling (BIM) by conducting a thorough analysis of factors such
as data interoperability, standardization, collaboration, skill gaps, and resistance to change. The data
were collected through a preliminary pilot survey and a primary questionnaire. The collected data
were then subjected to analysis using two statistical techniques: Exploratory Factor Analysis (EFA)
and Partial Least Squares Structural Equation Modeling (PLS-SEM). This study reveals noteworthy
associations between the adoption of Building Information Modeling (BIM) and several crucial
factors, including Continuous Integration (CI), Monitoring and Control (MC), Project Management
(PM), Resolution and Performance (RP), Structural Management (SM), Sustainability Administration
(SA), and Value Management (VM). This study provides valuable insights for professionals and
policymakers, offering recommendations to enhance the implementation of Building Information
Modeling (BIM) and advocating for additional research on complementary factors. Through the
identification and subsequent resolution of recognized shortcomings, Building Information Modeling
(BIM) can be employed in a proficient manner to augment collaboration, mitigate costs, optimize
energy efficiency, and implement sustainable construction methodologies. The present study makes
a substantial contribution to the progress of Building Information Modeling (BIM) adoption and the
efficient management of construction project life cycles.

Keywords: building information modeling (BIM); construction projects; end-to-end life cycle management

1. Introduction

Building Information Modeling (BIM) has emerged as a game-changer in the con-
struction industry, empowering initiatives with end-to-end life cycle management. With
a projected global market size of USD 15.06 billion by 2028, the pervasive adoption of
BIM is evident. Its advantages are considerable, with enhanced collaboration being a key
benefit [1]. BIM facilitates effective coordination among project stakeholders, resulting
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in improved collaboration and coordination. A total of 92% of BIM consumers have re-
ported that collaboration has improved. BIM offers remarkable cost and time reductions,
potentially saving up to 20% in costs and 40% in time during the design and construction
phases [2,3]. The ability to visualize projects in 3D and detect collisions in a virtual environ-
ment contributes further to improved decision making and error reduction, resulting in
improved project outcomes [4,5].

The influence of BIM extends beyond the construction phase, also enabling effi-
cient facility management. BIM streamlines facility-management processes by provid-
ing accurate and up-to-date information about building components and maintenance
requirements [6,7]. BIM supports material analysis, waste reduction, and environmental
impact assessment, contributing to sustainable building practices [8].

Case studies from the real world further demonstrate the efficacy of BIM. Due to
BIM implementation, the construction of the iconic Shard building in London saw a 5%
reduction in costs and a 20% reduction in project duration [9,10]. Similarly, the integrated
resort Marina Bay Sands in Singapore benefited from BIM’s coordination, dispute detection,
and visualization capabilities, resulting in enhanced project efficiency [1,11].

This study aims to identify the key gaps in BIM practices and provide practical
suggestions for bridging them by conducting a comprehensive examination of the current
state of BIM adoption and implementation [12]. The primary focus of this research pertains
to the examination and analysis of the issue of the adoption and implementation of BIM
within the context of construction projects. Although BIM has demonstrated its potential
for revolutionizing the construction industry by facilitating comprehensive project life cycle
management, there remain notable deficiencies and obstacles that impede its widespread
implementation and efficient utilization. This study offers a unique and thorough analysis
of the adoption and implementation of BIM in construction projects. This study specifically
aims to address the current gaps and challenges that impede its widespread adoption and
effective utilization [13,14]. The existing body of literature extensively covers the subject of
BIM; however, there is a noticeable dearth of research that comprehensively investigates
the adoption and implementation of BIM in construction projects. Prior research has
frequently presented a general assessment of the advantages and drawbacks of BIM [3,15].
However, there is a scarcity of studies that have specifically examined the precise factors
that impede the extensive implementation and efficient utilization of BIM within the
construction industry. In contrast to prior investigations that may have addressed certain
facets of BIM implementation, our study thoroughly examines the distinct elements of
data interoperability, standardization, collaboration, skill gaps, and resistance to change.
Furthermore, our research establishes significant associations between the adoption of BIM
and diverse project aspects. The utilization of statistical analysis techniques, specifically
EFA and Partial Least Squares Structural Equation Modeling (PLS-SEM), contributes to
the originality of this research by providing valuable insights into the importance of these
variables in facilitating successful BIM implementation. The purpose of these analyses is
to reveal new and valuable insights regarding the factors that influence the adoption of
BIM and its effects on comprehensive life cycle management within construction projects.
This study incorporates a range of practical situations and illustrations to demonstrate the
applicability of the suggested strategies and recommendations for the adoption of BIM.
The aforementioned scenarios exemplify the pragmatic implementation of the research
findings in various construction projects, thereby highlighting the potential advantages of
employing BIM for comprehensive life cycle management.

By addressing these voids, this manuscript intends to contribute to the advancement
of BIM implementation by proposing strategies and best practices that can increase the
effectiveness and efficacy of BIM in enabling construction projects to have seamless end-to-
end life cycle management [16,17]. Through an analysis of industry trends, case studies,
and statistical evidence, this manuscript will provide stakeholders, decision makers, and
practitioners in the construction industry with valuable insights that will enable them to
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overcome obstacles and harness the full potential of BIM to achieve successful construction
project outcomes [18,19].

“Building Information Modeling (BIM): Empowering Construction Projects with End-
to-End Life Cycle Management” provides an in-depth analysis of BIM implementation’s
novel aspects and innovations. This manuscript encourages the adoption of novel ap-
proaches to unleash the full potential of BIM for empowering construction projects with
integrated life cycle management by exhibiting emergent technologies, methodologies, and
best practices [20].

This manuscript presents a novel method for analyzing the influence of Building
Information Modeling (BIM) on construction projects, particularly in the context of the
Malaysian construction industry. Utilizing a structural equation modeling (SEM) approach,
this study provides a novel comprehension of the complex relationships between BIM
adoption, project outcomes, and overall life cycle management in the Malaysian construc-
tion industry. This novel methodological framework permits a comprehensive evaluation
of the factors which influence the successful implementation of BIM and its subsequent
impact on construction projects, thereby contributing new insights and knowledge to both
the BIM research domain and the Malaysian construction industry.

2. Literature Review

A study found that BIM adoption improves construction project cost management,
schedule adherence, and quality management. Another study conducted a systematic
literature review to identify the advantages and disadvantages of BIM-based collaboration
and its impact on construction project decision-making processes [21]. In addition, a review
article focused on BIM applications for building life cycle management, highlighting its
role in facility management, energy efficiency, and sustainability practices [22]. A case
study on implementing BIM for facility management in a healthcare facility demonstrated
its efficacy in maintenance planning, asset management, and space utilization [23]. A study
investigated the use of BIM to enhance construction safety and risk management. It was
discovered that BIM facilitates the visualization and analysis of potential dangers, resulting
in proactive risk-mitigation strategies and safer construction practices [24]. The focus
of the study was the influence of BIM on sustainable design and construction practices.
Studies have examined how BIM facilitates energy analysis, material optimization, and
environmental impact assessments, resulting in more sustainable and environmentally
benign construction projects [25,26]. Another study investigated the benefits of BIM in
prefabrication and modular construction. It showed how BIM streamlines the design-
to-fabrication process, improves coordination between off-site and on-site activities, and
boosts project productivity and efficiency [27].

A study investigated the role of BIM in enhancing communication and collaboration
between diverse construction disciplines. Studies have also highlighted the significance
of integrated BIM platforms for facilitating seamless data exchange, reducing errors, and
nurturing effective collaboration [17,28].

The research has investigated the use of BIM for preserving and restoring historic
buildings. It has demonstrated how BIM can aid in capturing, documenting, and visual-
izing information about historic buildings, thereby facilitating accurate restoration and
preservation efforts [17,28]. The benefits of BIM for facility management and mainte-
nance operations were examined in another study. The Journal of Facilities Management
(2021) highlighted how BIM provides a digital representation of building assets, facili-
tating efficient maintenance planning, the monitoring of asset information, and effective
resource allocation.

The integration of BIM and augmented reality (AR) technology in construction projects
has been investigated. It was demonstrated how the combination of BIM and augmented
reality improves on-site visualization, increases construction accuracy, and enables real-time
collaboration among project stakeholders [29,30]. A study examined the financial benefits of
implementing BIM in construction initiatives. It analyzed the cost savings realized through
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improved coordination, reduced rework, and optimized resource utilization, highlighting
the positive ROI associated with BIM adoption.

Another research investigation investigated the use of BIM in large infrastructure ini-
tiatives. Researchers examined how BIM facilitates coordination among multidisciplinary
teams, improves conflict detection, and enhances the overall project delivery process,
resulting in effective infrastructure project outcomes [31]. A study concentrated on incor-
porating BIM with supply chain management in the construction industry. It highlighted
how BIM-enabled supply chain collaboration enhances material procurement, reduces
wastage, and improves logistics planning, resulting in cost savings and enhanced project
efficiency [32,33].

The implementation of BIM in renovating and retrofitting existing structures was
the subject of another investigation. It demonstrated how BIM facilitates precise as-built
documentation, identifies retrofit opportunities, and facilitates decision making for energy-
efficient retrofits and building performance optimization [34,35]. The use of BIM in disaster
resilience and post-disaster reconstruction initiatives was investigated in a study. It demon-
strated how BIM could aid in the rapid appraisal of damage, facilitate the coordination
of reconstruction efforts, and improve the resilience of built infrastructure in the face of
natural disasters [28,36].

Research has investigated the use of BIM in public infrastructure asset management.
Studies have highlighted how BIM-based asset management systems provide a compre-
hensive asset information database, facilitating effective maintenance planning, condition
monitoring, and life cycle assessment of public infrastructure assets [37,38]. A study in-
vestigated the use of BIM for risk management on construction projects. It demonstrated
how BIM facilitates the identification and analysis of project risks, facilitates the develop-
ment of risk-mitigation strategies, and improves the overall risk management processes in
construction projects [17,28].

The focus of the research has been on the function of BIM in enhancing constructability
and constructability reviews. Studies have also demonstrated how BIM facilitates the early
identification of constructability issues, improves construction sequencing and logistics
planning, and enhances overall project constructability [17,28]. The impact of BIM on client
contentment in construction projects was investigated in a study. Studies have also high-
lighted how BIM-enabled visualization, improved communication, and enhanced project
coordination contribute to increased client satisfaction and better project outcomes [17,28].

These additional studies have expanded the body of knowledge regarding the im-
plementation of BIM and its impact on various facets of construction projects, as shown
in Table 1. They have shed light on the function of BIM in infrastructure projects, supply
chain management, renovation and retrofitting, disaster resilience, asset management,
risk management, constructability, client satisfaction, and post-disaster reconstruction.
By incorporating the findings of these studies, this manuscript’s argument regarding the
transformative potential of BIM in empowering construction projects with end-to-end life
cycle management is strengthened.

Table 1. Identification of factors from the literature.

Sr. No Factors References

B1 Increased Cooperation [23,26]
B2 Improved Visualization [17,28]
B3 Conflict Detection [17,28]
B4 Efficient Project Management [17,28]
B5 Estimation and Analysis of Costs [39,40]
B6 Facility Administration and Maintenance [41,42]
B7 Sustainability and Energy Analysis [1,40,43]

B8 Construction Sequencing and Phasing for Prefabricated and
Off-Site Construction [8,11]
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Table 1. Cont.

Sr. No Factors References

B9 Optimization of Maintenance and Operations [2,3]
B10 Integration and Interoperability of Data [8,10]
B11 Compliance with Regulations and Documentation [1,11]
B12 Monitoring the Performance of the Facility [12,17]
B13 Value of Long-Term Assets [17,28]
B14 Continuous Enhancement and Learned Lessons [12,16]
B15 Resource Planning and Management [19,20]
B16 Participant-Involvement Facility Expansion and Renovation [1,16]
B17 Clash Resolution and Construction Readiness Evaluation [14,39]
B18 Training and Simulation [44,45]
B19 Asset Monitoring and Inventory Control [41,42]
B20 Compliance Reporting and Management [17,28]
B21 Remote Collaboration and Electronic Conferences [17,28]
B22 Continuous Maintenance and Monitoring [17,28]
B23 Management of Knowledge and Lessons Learned [14]
B24 Risk Management [14,15]

3. Methodology

This investigation of the issue being considered takes the form of a conceptual model
in its methodological approach. An exhaustive examination of the relevant literature
was conducted to ascertain pertinent results, which were then included in developing
hypotheses [17,28]. To put these assumptions to the test, empirical data were gathered via
a three-step process, which included determining, categorizing, and constructing linkages
among the various components of the model [17,28]. Figure 1 illustrates the results of
the model and presents them. Following an analysis of the relevant literature, the most
important BIM activities for achieving success were identified, and Table 1 illustrates
these activities.
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3.1. Pilot Survey

In order to address the identified concern, this study presents a comprehensive method-
ology that entails a meticulous analysis of the variables influencing the adoption and



Buildings 2023, 13, 2041 6 of 24

implementation of BIM. The methodology encompasses an initial pilot survey followed
by a primary questionnaire aimed at gathering pertinent data from stakeholders within
the construction industry. The data gathered were subsequently subjected to a statistical
analysis through the utilization of two specific techniques, namely EFA and PLS-SEM.
These analyses facilitated the identification of significant correlations between the adoption
of BIM and crucial project elements, thereby enhancing comprehension of the factors that
impact its effective implementation.

Before this study’s primary data collection phase, a pilot survey was conducted to
collect preliminary data and refine the research instrument. The pilot survey included
120 respondents selected based on their expertise and involvement in the construction
industry. The pilot survey evaluated the questionnaire’s clarity, relevance, and efficacy in
capturing the desired information regarding BIM adoption or its impact on construction
project life cycle management [17,28]. The pilot survey sample was selected using a tech-
nique known as purposive sampling. This method insured that the selected respondents
possessed the necessary knowledge and experience in BIM implementation, making them
qualified to provide insightful feedback on the questionnaire. The participants were con-
struction professionals with hands-on experience with BIM-enabled projects, including
project managers, architects, engineers, contractors, and BIM specialists [24,27].

The pilot survey was administered using both online and in-person methods. The par-
ticipants were given explicit instructions on completing the questionnaire and a reasonable
amount of time to submit their answers. To ensure the accuracy and completeness of the
data, the researchers maintained regular contact with the participants and addressed any
queries or concerns they had throughout the survey period.

EFA Analysis

Exploratory Factor Analysis (EFA) was performed on the pilot survey data from
Section 3. EFA is a statistical method for identifying underlying factors or constructs
within a collection of observed variables. The EFA analysis identified the factors associated
with BIM adoption and construction project life cycle management. These aspects of BIM
implementation included cost management, schedule adherence, quality management,
collaboration, and decision making [29,46]. The survey items with the highest factor
loadings were categorized according to their respective factors. The EFA analysis was
instrumental in the formulation of the primary questionnaire. It offered a methodical
way to classify survey items and comprehend the underlying dimensions of interest.
By identifying the factors via EFA, this study ensured that the primary questionnaire
captured the most important aspects of BIM adoption and construction project life cycle
management [17,28].

Overall, the EFA analysis provided valuable insights into the underlying structure
of the survey data, allowing for a better comprehension of this study’s main dimensions
and relationships. Utilizing this methodology, this study ensured a thorough and rigorous
examination of the impact of BIM on construction project life cycle management.

3.2. Main Questionnaire

To investigate the impact that BIM variables have on the management of the life cycle
of construction projects, a questionnaire (Appendix A) for a systematic cross-sectional
survey was designed and carried out in the Malaysian state of Perak. The respondent’s
demographic profile, BIM activities, and open-ended questions made up the three major
portions of the questionnaire, which many stakeholders from the construction industry
filled out as part of the research project. The stratified sampling approach was used to
guarantee that the sample would be representative. The participants, who had considerable
BIM activity and expertise, submitted their assessment using a Likert 5-point scale, which
has been extensively utilized in prior research. The answer choices on this scale ranged
from very high (5) to nil or very low (1). The number of participants in the sample was
185. The participants were chosen from 265 construction industry professionals who had
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previously participated in a self-administered interview. The response rate of 68%, deemed
to be satisfactory for future investigation [17,28], was used.

3.2.1. PLS-SEM Factor Analysis

This study utilized Partial Least Squares Structural Equation Modeling (PLS-SEM) to
investigate the relationship between the constructs of interest and the data. PLS-SEM is a sta-
tistical method for analyzing complex relationships between observed and latent variables.

The first stage of the PLS-SEM Factor Analysis was to assess the measurement model
by evaluating the constructs’ reliability and validity. Cronbach’s alpha was used to evaluate
the internal consistency of the items to determine the model’s reliability. Values greater than
0.7 indicate adequate reliability. In addition, composite reliability (CR) and average variance
extracted (AVE) were calculated to evaluate the constructs’ reliability and convergent
validity. A CR value greater than 0.70 and an AVE value greater than 0.50 indicate good
reliability and convergent validity [17,24].

Next, the constructs’ discriminant validity were examined to ensure they measured
distinct concepts. This was accomplished by evaluating the Fornell–Larcker criterion and
the item cross-loadings. The Fornell–Larcker criterion contrasts the square root of each
construct’s AVE to the inner construct correlations [15,38]. The discriminant validity is
established if the square root of the AVE of a construct is greater than its correlation with
other constructs. In addition, cross-loadings were examined to ensure that each item was
predominantly laden on its corresponding structure.

The structural model was analyzed after establishing the measurement model to deter-
mine the construct relationships [47,48]. The statistical significance of the path coefficients,
representing the strength and direction of the relationships, was determined using boot-
strapping techniques. Bootstrapping entails drawing multiple samples randomly from the
dataset to estimate the path coefficients’ standard errors and confidence intervals [28,39].
The bootstrapped confidence intervals were compared to zero to ascertain the significance
of the path coefficients. A coefficient was deemed statistically significant if the confidence
interval did not contain zero.

In addition, the coefficient of determination (R2) was calculated to ascertain the pro-
portion of variance in the endogenous constructs that could be attributed to the exogenous
constructs. This provided insight into the model’s predictive ability [40,42].

The PLS-SEM Factor Analysis technique utilized in this study allowed for an assess-
ment of the measurement model’s reliability and validity, an examination of discriminant
validity, and an evaluation of the constructs’ relationships. In the context of construction
project life cycle management, this study sought to provide robust and meaningful find-
ings regarding the impact of BIM-related activities on Open-Source Software (OSS) by
employing rigorous statistical techniques.

3.2.2. Structural Model Analysis

The hypotheses presented in the table were evaluated using a bootstrap analysis.
The analysis included an examination of the relationship coefficients, original sample
coefficients, sample mean coefficients, standard deviations, T statistics, p-values, and
overall results for each hypothesis. The hypotheses explored the relationship between
various factors (CI, MC, PM, RP, SM, SA, and VM) and their impact on Building Information
Modeling (BIM) [5,15].

Bootstrap analysis is a statistical technique that entails a resampling of the data set to
estimate the uncertainty of the parameters and draw conclusions about the population. It
was used to ascertain the significance of the coefficients and the strength of the relationships
between the factors and BIM in this study.

The statistical significance of the relationships was determined by contrasting the esti-
mated coefficients with zero and calculating T statistics and p-values. The data supported
all the hypotheses, suggesting a significant positive relationship between the examined
factors and BIM [32,39].
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The original sample coefficients (O) represent the estimated values from the original
dataset, whereas the sample mean coefficients (M) represent the mean values obtained
from multiple bootstrap samples. The standard deviation (SD) measures the coefficients’
variability. The T statistics evaluate the significance of the coefficients, while the p-values
indicate the probability that the observed results were obtained by coincidence [15,42].

This study’s bootstrap analysis provides strong evidence supporting the hypotheses,
highlighting the significance of factors such as Continuous Integration, Monitoring and
Control, Project Management, Resolution and Performance, Structural Management, Sus-
tainability Administration, and Value Management concerning BIM implementation and
its effects.

3.2.3. Predictive Relevance

This investigation used the predictive relevance Q2 measure within the Smart PLS 4.0
software as the methodology. This methodology aimed to evaluate the predictive power
and applicability of the research model in relation to the observed data. By calculating
the Q2 values, this study intended to ascertain the predictive relevance of the model and
its capacity to generate accurate forecasts [17,28]. This analysis was conducted using
Smart PLS 4, a popular software application for structural equation modeling (SEM), to
improve the comprehension of the relationships between the variables and assess the
predictive potential of the model. Positive values signifying the model’s ability to predict
the dependent variables based on the independent variables were the anticipated outcome
of employing the predictive relevance Q2 measure [3,19,28]. Higher Q2 values indicate
that the research model effectively encapsulates and explains the variables’ relationships.
A positive result would support the model’s validity and utility in generating accurate
predictions and enhancing comprehension of the phenomenon under study.

4. Results
4.1. Demographic Details

The demographic details provide an overview of this study’s respondents’ charac-
teristics, which are described in Table 2. The data are categorized based on profession,
organization, Malaysian construction industry experience, and BIM knowledge. In terms
of profession, the respondents consisted of a diverse range of professionals, including
architects (9.19%), quantity surveyors (8.65%), civil engineers (52.43%), M&E engineers
(3.24%), project managers (21.08%), and others (5.41%). This distribution ensures a varied
perspective from different disciplines within the construction industry [12,20].

Table 2. Demographic details of respondents.

Category Classification Frequency %

Profession Architect 17 9.19
QS 16 8.65
CE 97 52.43

M&E 6 3.24
PM 39 21.08

Others 10 5.41

Organization Contractors 93 50.27
Consultants 78 42.16

Clients 14 7.57

Malaysian Construction Industry Experience Less than 5 Years 61 32.97
6–10 Y 60 32.43
1–15 Y 40 21.62
16–20 Y 15 8.11

Over 20 Y 9 4.86

Knowledge about BIM Yes 182 98.38
No 3 1.62
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Regarding organization, the respondents were affiliated with different types of organi-
zations. The majority were from contractor companies (50.27%), followed by consultants
(42.16%) and clients (7.57%). This representation from various sectors allowed for a com-
prehensive understanding of BIM adoption and challenges from different organizational
perspectives. The respondents’ experience in the Malaysian construction industry was
categorized into different brackets. The largest group had 0–5 years of experience (32.97%),
followed by 6–10 years (32.43%), 11–15 years (21.62%), 16–20 years (8.11%), and over
20 years (4.86%). This range of experience levels ensured insights from early-career profes-
sionals and seasoned industry experts. Regarding knowledge about BIM, most respondents
(98.38%) indicated that they knew about BIM, while a small portion (1.62%) reported no
knowledge about BIM [49]. This indicates that this study primarily focused on individuals
familiar with BIM and its implications for the construction industry.

4.2. EFA Analysis

High factor loadings indicate that the variables BIM23, BIM9, BIM15, BIM21, and
BIM18 are strongly associated with Factor 1 (0.828, 0.802, 0.784, 0.719, and 0.772, respec-
tively), and are shown in Table 3. These variables contribute significantly to Factor 1,
indicating that they share similar or interconnected characteristics. Similarly, the high
factor loadings of the variables BIM19, BIM1, BIM22, BIM10, BIM11, and BIM5 indicate
that they significantly impact Factor 2. These variables (0.723, 0.701, 0.716, 0.705, 0.665,
and 0.602) strongly correlate with Factor 2. The high factor loadings of BIM13, BIM20, and
BIM3 on Factor 3 indicate their strong relationship with this factor (0.861, 0.801, and 0.761,
respectively). This indicates that these variables share comparable traits or patterns.

Table 3. Exploratory factor analysis.

Variables 1 2 3 4 5 6 7

BIM23 0.828
BIM9 0.802

BIM15 0.784
BIM21 0.719
BIM18 0.772
BIM19 0.723
BIM1 0.701

BIM22 0.716
BIM10 0.705
BIM11 0.665
BIM5 0.602

BIM13 0.861
BIM20 0.801
BIM3 0.761

BIM17 0.787
BIM12 0.739
BIM6 0.688

BIM14 0.841
BIM4 0.783
BIM2 0.776
BIM7 0.645

Eigenvalue 4.72 4.21 3.60 3.06 2.69 2.29 2.01

Extraction BIM8, BIM24, BIM16

Factors four through seven also have substantial variables associated with them, albeit
with relatively lesser loadings [50,51]. These variables contribute to comprehending the
fundamental factors and highlight their distinctive qualities [35,49]. Their eigenvalues
indicate the relative significance of the factors. The higher eigenvalues of Factors 1, 2, and 3
(4.72, 4.21, and 3.60, respectively) indicate that they account for a substantial portion of the
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data’s variance. The remaining Factors (4–7) have progressively lower eigenvalues (3.06,
2.69, 2.29, and 2.01), indicating a diminished explanatory ability.

The EFA analysis was conducted with a minimum loading criterion threshold of 0.6.
Those variables that did not satisfy this criterion were excluded from further analysis.
Therefore, three variables, BIM8, BIM24, and BIM16, were omitted from the factor solution.

A varimax rotation with the principal component axis was applied to the extracted
factors. This rotation method helps maximize the variance of each factor and produce factor
structures that are simpler and more interpretable.

The final factor solution identified seven factors labeled Factor 1 through Factor 7. It
was determined which variables had the maximum loadings on each factor, signifying
their strong association with the respective factor [3,19]. The eigenvalues of the factors
indicate their relative contribution to the data variance explanation. Table 4 shows the
categorization of the variables after extraction from the EFA analysis; this happened after
placing the variables into seven groups based on their loading and eigenvalues.

Table 4. Categorization of variables after extraction from EFA analysis.

Category Code Factors Cronbach’s Alpha

Structural
Management

BIM23 Management of Knowledge and Lessons Learned

0.825
BIM9 Optimization of Maintenance and Operations

BIM15 Resource Planning and Management

BIM21 Remote Collaboration and Electronic Conferences

Monitoring and Control

BIM18 Training and Simulation

0.813
BIM19 Asset Monitoring and Inventory Control

BIM1 Increased Cooperation

Continuous
Integration

BIM22 Continuous Maintenance and Monitoring

BIM10 Integration and Interoperability of Data

0.772BIM11 Compliance with Regulations and Documentation

BIM5 Estimation and Analysis of Costs

Value
Management

BIM13 Value of Long-Term Assets

0.775BIM20 Compliance Reporting and Management

BIM3 Conflict Detection

Resolution and Performance

BIM17 Clash Resolution and Construction Readiness Evaluation

0.792BIM12 Monitoring the Performance of the Facility

BIM6 Facility Administration and Maintenance

Project Management
BIM14 Continuous Enhancement and Learned Lessons

0.744
BIM4 Efficient Project Management

Sustainability
Administration

BIM2 Improved Visualization
0.753

BIM7 Sustainability and Energy Analysis

The EFA analysis effectively identified the fundamental factors and associated vari-
ables by employing the loading criterion and implementing a varimax rotation. This
method reduces the data’s complexity and facilitates the interpretation of the factor struc-
ture. Figure 2 indicates this study’s hypotheses based on the research objective. It was
generated after the EFA analysis and categorization.
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Figure 2. Hypotheses of this study (developed after EFA).

Hypothesis 1 (H1). Continuous integration has a significant relation with BIM-based construction
life cycle management.

Hypothesis 2 (H2). Monitoring and control have a significant relation with BIM-based construc-
tion life cycle management.

Hypothesis 3 (H3). Project management has a significant relation with BIM-based construction
life cycle management.

Hypothesis 4 (H4). Resolution and performance have a significant relation with BIM-based
construction life cycle management.

Hypothesis 5 (H5). Structural management has a significant relation with BIM-based construction
life cycle management.

Hypothesis 6 (H6). Sustainability administration has a significant relation with BIM-based
construction life cycle management.

Hypothesis 7 (H7). Value management has a significant relation with BIM-based construction life
cycle management.

4.3. PLS Algorithm Analytical Analysis

This study’s convergent validity outcomes indicate that the variables have significant
associations with their respective constructs. This is supported by the variables’ ability
to accurately measure the fundamental constructs, as indicated by their high factor load-
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ings. In addition, the average variance extracted (AVE) values exceed the recommended
threshold, indicating that the variables account for a substantial portion of the constructs’
variance [49,52]. Further supporting the convergent validity of the measurement model, the
composite reliability (CR) values indicate good internal consistency within the constructs.
These findings demonstrate the instrument’s dependability and validity. The table pro-
vides a comprehensive analysis of each category’s factor loadings, variance inflation factor
(VIF), Cronbach’s alpha (CA), composite reliability (CR), and average variance extracted
(AVE) [17,28].

For the category of Structural Management, the variables BIM23 and BIM9 have high
loadings of 0.920 and 0.845, respectively, indicating a strong relationship with this factor.
However, BIM15 did not meet the minimum criterion value, so it was removed from the
analysis. Another variable, BIM21, has a significant loading of 0.913, indicating that it is
relevant to the Structural Management factor. The absence of multicollinearity issues is
indicated by a VIF value of 1.480. A Cronbach’s alpha (CA) value of 0.873 indicates good
internal consistency among the variables in this category, and a composite reliability (CR)
value of 0.882 provides additional evidence of the reliability of the measurements [14,31].
An average variance extracted (AVE) value of 0.798% suggests that the variables in this
category account for a substantial proportion of the variance in the construct shown in
Table 5.

Table 5. Convergent validity analysis indicating inflation factor, loading, reliabilities, and average
variances.

Category Code Loadings VIF CA CR AVE

Structural
Management

BIM23 0.920 1.480 0.873 0.882 0.798
BIM9 0.845 1.486

BIM15 Deleted 1.353
BIM21 0.913 1.719

Monitoring and Control
BIM18 0.859 1.423 0.806 0.807 0.720
BIM19 0.869 1.381
BIM1 0.817 1.661

Continuous
Integration

BIM22 Deleted 2.073 0.721 0.726 0.641
BIM10 0.834 2.051
BIM11 0.789 2.143
BIM5 0.778 1.178

Value
Management

BIM13 0.810 2.826 0.731 0.735 0.674
BIM20 0.753 2.897
BIM3 0.708 1.287

Resolution and
Performance

BIM17 0.833 1.381 0.804 0.811 0.719
BIM12 0.831 1.429
BIM6 0.878 1.876

Project Management BIM14 0.896 2.143 0.701 0.703 0.761
BIM4 0.849 1.908

Sustainability
Administration

BIM2 0.922 1.480 0.844 0.851 0.865
BIM7 0.938 1.486

CA = Cronbach’s alpha; CR = composite reliability; AVE = average variance extracted; VIF = variance
inflation factor.

Moving on to the Monitoring and Control factor, BIM18 demonstrates a high loading
of 0.859, indicating a strong relationship with this factor. Similar to BIM19 and BIM1,
BIM19 and BIM1 exhibit substantial loadings of 0.866 and 0.817%, respectively. A VIF value
of 1.423 indicates that there are no multicollinearity issues [20,49]. A CA value of 0.806
and a CR value of 0.807 indicate that this category has excellent internal consistency and
reliability. An AVE value of 0.720 indicates that the variables collectively account for a
substantial proportion of the construct’s variance.
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BIM22 was removed from the Continuous Integration category because it did not
satisfy the minimum criteria value. In contrast, BIM10, BIM11, and BIM5 have respectable
loadings of 0.834, 0.789%, and 0.778%, respectively. A VIF value of 2.073 indicates that
there are no major multicollinearity issues. CA and CR values of 0.721 and 0.726 indicate
adequate internal consistency and reliability. An AVE value of 0.641 indicates that the
variables in this category account for a moderate level of variance in the construct [17,28].

Likewise, the remaining categories (Value Management, Resolution and Performance,
Project Management, and Sustainability Administration) exhibit significant loadings for
their respective variables and acceptable VIF, CA, CR, and AVE values. These results
indicate that the variables within each category are reliable measures of their respective
constructs and contribute significantly to understanding this study as a whole, as shown in
Figure 3.

Buildings 2023, 13, x FOR PEER REVIEW 13 of 24 
 

BIM1 0.817 1.661    

Continuous 

Integration 

BIM22 Deleted 2.073 0.721 0.726 0.641 

BIM10 0.834 2.051    

BIM11 0.789 2.143    

BIM5 0.778 1.178    

Value 

Management 

BIM13 0.810 2.826 0.731 0.735 0.674 

BIM20 0.753 2.897    

BIM3 0.708 1.287    

Resolution and Performance 

BIM17 0.833 1.381 0.804 0.811 0.719 

BIM12 0.831 1.429    

BIM6 0.878 1.876    

Project Management 
BIM14 0.896 2.143 0.701 0.703 0.761 

BIM4 0.849 1.908    

Sustainability 

Administration 

BIM2 0.922 1.480 0.844 0.851 0.865 

BIM7 0.938 1.486    

CA = Cronbach’s alpha; CR = composite reliability; AVE = average variance extracted; VIF = variance 

inflation factor. 

 

Figure 3. PLS algorithm analysis indicating the values of path loadings along with p-values. 

As shown in Table 6, the HTMT table, the discriminant validity results indicate the 

level of distinction between the different constructs. The values along the diagonal repre-

sent the square root of the average variance extracted (AVE) for each construct, demon-

strating the constructs’ reliability [13,19]. The heterotrait–monotrait (HTMT) ratio, which 

assesses the intensity of the correlation between distinct constructs, is represented by val-

ues off the diagonal. 

The diagonal elements’ HTMT values are all one, indicating perfect discriminant va-

lidity within each construct. Generally, the off-diagonal values are less than one, indicat-

ing a lower correlation between the various constructs. This indicates that the constructs 

are separate and measure distinct underlying concepts [3,20]. Nonetheless, a few off-di-

agonal values are close to or above one, indicating potentially discriminant validity issues. 

Figure 3. PLS algorithm analysis indicating the values of path loadings along with p-values.

As shown in Table 6, the HTMT table, the discriminant validity results indicate the
level of distinction between the different constructs. The values along the diagonal represent
the square root of the average variance extracted (AVE) for each construct, demonstrating
the constructs’ reliability [13,19]. The heterotrait–monotrait (HTMT) ratio, which assesses
the intensity of the correlation between distinct constructs, is represented by values off
the diagonal.

Table 6. HTMT analysis for the determination of discriminant validity.

Constructs CI MC PM RP SM SA VM

Continuous Integration = CI
Monitoring and Control = MC 0.307
Project Management = PM 0.322 0.293
Resolution and Performance = RP 0.569 0.433 0.167
Structural Management = SM 0.229 0.298 0.113 0.379
Sustainability Administration = SA 0.261 0.176 0.187 0.229 0.221
Value Management = VM 0.138 0.371 0.327 0.667 0.387 0.423
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The diagonal elements’ HTMT values are all one, indicating perfect discriminant va-
lidity within each construct. Generally, the off-diagonal values are less than one, indicating
a lower correlation between the various constructs. This indicates that the constructs are
separate and measure distinct underlying concepts [3,20]. Nonetheless, a few off-diagonal
values are close to or above one, indicating potentially discriminant validity issues. It may
be necessary to conduct an additional analysis and interpretation of these particular values
to assess the discriminant validity more precisely [53,54].

Table 7, which gives the Fornell–Larcker criteria, provides information regarding
the discriminant validity of this study’s constructs. It displays the square root of the
extracted average variance (AVE) values on the diagonal and the correlations between the
constructs off-diagonal. The diagonal elements in this table represent the AVE values for
each construct. These values indicate how much variance each construct captures [3,35].
Higher AVE values indicate that the construct is distinct and accounts for a substantial
variance. It can evaluate the discriminant validity by examining the off-diagonal elements
representing correlations between the constructs [55,56]. To establish the discriminant
validity according to the Fornell–Larcker criteria, the correlations between the constructs
must be less than the corresponding AVE values.

Table 7. Fornell–Larcker criterion indicating discriminant validity.

Constructs CI MC PM RP SM SA VM

Continuous Integration = CI 0.801
Monitoring and Control = MC 0.233 0.849
Project Management = PM 0.228 0.216 0.873
Resolution and Performance = RP 0.438 0.352 0.133 0.848
Structural Management = SM 0.174 0.251 −0.089 0.327 0.893
Sustainability Administration = SA 0.206 0.147 0.144 0.191 0.188 0.93
Value Management = VM 0.177 0.28 0.221 0.144 0.291 0.308 0.758

In this instance, most of the off-diagonal correlations are smaller than their correspond-
ing AVE values, indicating that the constructs have good discriminant validity. For instance,
the correlation between Continuous Integration (CI) and Monitoring and Control (MC)
is 0.233, which is less than CI’s mean absolute value (0.801). Likewise, other off-diagonal
correlations are smaller than their respective AVE values, supporting the discriminant
validity of the constructs [57]. Comparing the correlations with the corresponding AVE val-
ues, the Fornell–Larcker criteria table provides insight into the discriminant validity of the
constructs [20,49]. While most of the constructs demonstrate excellent discriminant validity,
those with higher correlations with other constructs may require additional examination
and refinement to ensure their uniqueness.

The cross-loading criteria shown in Table 8 details the discriminant validity of the
variables within each construct. It displays the variable cross-loadings on the various con-
structs. Each entry in this table corresponds to a variable, while each column corresponds
to a construct. The cell values represent the variable cross-loadings on the corresponding
constructs. The cross-loadings represent the intensity of a variable’s association with a
construct [3,21].

To evaluate the discriminant validity, the magnitude of the cross-loadings is examined.
Ideally, a variable’s cross-loadings on its construct should be greater than those on other
constructs. This indicates a stronger association between the variable and its construct,
supporting discriminant validity [14,20]. In this instance, most of the variables have greater
cross-loadings on their construct than others, indicating good discriminant validity. For
instance, BIM5 has the highest density on the Continuous Integration (CI) construct (0.778)
relative to the other constructs, indicating that CI is its primary focus.
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Table 8. Cross-loadings criteria for judgment of discriminant validity.

Variables CI MC PM RP SM SA VM

BIM5 0.778 0.197 0.193 0.308 0.055 0.144 0.478
BIM10 0.834 0.116 0.185 0.425 0.15 0.169 0.81
BIM11 0.789 0.253 0.172 0.31 0.203 0.18 0.534
BIM18 0.153 0.859 0.205 0.256 0.163 0.102 0.165
BIM19 0.243 0.869 0.133 0.274 0.233 0.161 0.23
BIM1 0.193 0.817 0.212 0.36 0.237 0.108 0.307
BIM4 0.177 0.206 0.849 0.06 −0.078 0.119 0.12

BIM14 0.217 0.174 0.896 0.163 −0.077 0.131 0.255
BIM6 0.388 0.327 0.16 0.878 0.334 0.182 0.588

BIM12 0.344 0.297 0.064 0.831 0.234 0.125 0.511
BIM17 0.38 0.27 0.105 0.833 0.254 0.175 0.533
BIM21 0.17 0.194 −0.107 0.334 0.913 0.172 0.294
BIM23 0.19 0.243 −0.081 0.349 0.92 0.14 0.276
BIM9 0.101 0.239 −0.046 0.177 0.845 0.197 0.202
BIM2 0.158 0.119 0.126 0.165 0.172 0.922 0.263
BIM7 0.222 0.152 0.141 0.188 0.177 0.938 0.306

BIM13 0.834 0.116 0.185 0.425 0.15 0.169 0.81
BIM20 0.382 0.353 0.152 0.718 0.271 0.252 0.753
BIM3 0.557 0.143 0.167 0.266 0.238 0.283 0.708

In a few instances, the variables have significant cross-loadings on constructs other
than their own. For example, BIM3 reveals relatively high cross-loadings on the Struc-
tural Management (SM) and Sustainability Administration (SA) constructs (0.23 and
0.28, respectively). This suggests that BIM3 lacks discriminant validity, as it is related
to multiple constructs.

The cross-loadings criteria table aids in assessing the discriminant validity of the vari-
ables within the constructs. Most of the variables exhibit good discriminant validity, as their
cross-loadings on their constructs are greater than those of other variables. Nonetheless,
significant cross-loadings on multiple constructs for specific variables indicate the need for
further investigation and possible refinement to ensure their uniqueness.

4.4. Model Structural Analysis

In general, the findings of the path model analysis carried out using the bootstrap
method validate the statistical significance and directionality of the correlations between
the predictor components and BIM [12,31]. This lends support to this study’s theoretical
framework and assumptions. Table 9 below presents the findings obtained using the
bootstrap method for the route model analysis. The path coefficients indicate the strength
of the links between the predictor constructs (CI, MC, PM, RP, SM, SA, and VM) and the
outcome construct (BIM), and the direction in which those associations run.

The original sample values of the path coefficients are shown in the column labeled
“O,” while the sample mean values acquired by bootstrapping are displayed in the column
labeled “M.” The standard deviation, abbreviated as SD, measures the amount of variation
among the route coefficients throughout all of the bootstrap samples [19,52]. A ratio of the
predicted route coefficient to the standard error of that coefficient is what the T statistics
seek to quantify, which can be seen in Figure 4. When the T value is larger, it suggests that
the association between the predictor construct and the result construct is stronger. The
results of this study show that all of the T statistics have rather high values, indicating
substantial correlations between the predictor factors and BIM.
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Table 9. Hypothesis-testing results of this study.

Hypothesis Relation (O) (M) SD T Statistics p-Values Results

H1 CI → BIM 0.238 0.237 0.017 14.268 0 Accepted
H2 MC → BIM 0.266 0.266 0.015 18.186 0 Accepted
H3 PM → BIM 0.247 0.246 0.011 22.441 0 Accepted
H4 RP → BIM 0.277 0.276 0.016 17.151 0 Accepted
H5 SM → BIM 0.274 0.274 0.014 20.004 0 Accepted
H6 SA → BIM 0.189 0.188 0.013 14.51 0 Accepted
H7 VM → BIM 0.161 0.162 0.015 10.465 0 Accepted

(O) = original sample; (M) = sample mean; SD = standard deviation; CI = continuous integration; MC = Monitoring
and Control; PM = Project Management; RP = Resolution and Performance; SM = Structural Management;
SA = Sustainability Administration; VM = Value Management.
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The p-values indicate the chance of seeing a link as strong as or stronger than the one
estimated in this study. This was performed under the assumption that no real relationship
exists in the population. A p-value of zero suggests strong evidence against the alternative
hypothesis of a significant association and supports the null hypothesis that there is no
relationship [16,18]. In this particular instance, every p-value is equal to zero, indicating
extremely significant correlations between the predictor components and BIM.

Given these findings, each hypothesis may be considered acceptable, from H1 to H7.
This indicates that a substantial body of empirical data supports the links between the
predictor constructs (CI, MC, PM, RP, SM, SA, and VM) and the outcome construct (BIM).
These results give vital insights into the different variables’ effects on BIM [14,16]. They
also indicate that each predictor construct adds considerably to the overall knowledge
and prediction of BIM in the analyzed model. In general, the findings of the path model
analysis carried out using the bootstrap method validate the statistical significance and
directionality of the correlations between the predictor components and BIM. This lends
support to this study’s theoretical framework and assumptions.

4.5. Predictive Relevance

Table 10 contains information regarding the predictive value of a model for the Build-
ing Information Modeling (BIM)-based life cycle management of construction projects.
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The predictive relevance is the degree to which a model or method accurately predicts
the behavior or outcome of a system. In this instance, it is used to assess the efficacy of
BIM within the context of construction project management. The “SSO” column indicates
the sum of the squares of observations. This statistical measure computes the sum of the
squared differences between each value and the mean of all observed values [18,41]. In the
table’s context, SSO represents the sum of the squares of the observed values associated
with the construction project predictions generated by the BIM model.

Table 10. Predictive relevance of the main construct.

Predictive Relevance SSO SSE Q2 (=1 − SSE/SSO)

Building Information Modeling (BIM) for Life
Cycle Management of Construction Projects 4320 3254.339 0.247

The “SSE” column indicates the sum of the squared errors. It measures the sum of
the squared differences between the observed and the BIM model’s predicted values. It
measures the deviation or error between the predicted and actual values. The “Q2” column
represents the coefficient of determination or the proportion of the total variation in the
observed values that the BIM model can explain [20,49]. It is calculated as one minus the
ratio of SSE to SSO (sum of squared observations to sum of squared errors). In other words,
Q2 indicates how much of the total variation in the observed data is accounted for by
the model’s predictions. A value closer to one indicates a greater predictive relevance or
precision of the BIM model for the life cycle management of construction projects [18,27].
The value for Q2 in the table is 0.247, indicating that the BIM model explains approximately
24.7% of the observed data’s total variance.

5. Discussion

Our findings demonstrate the significance of BIM adoption for “Empowering Con-
struction Projects with End-to-End Life Cycle Management”. The results offer practitioners
and decision makers significant insights for comprehending the determinants of BIM adop-
tion and can aid in developing strategies and interventions to facilitate its implementation.
Based on these findings, additional research could investigate additional factors and refine
the understanding of BIM adoption in the construction industry.

Continuous Integration (CI) is a software development practice that entails the inte-
gration of various software tools and development practices to guarantee the continuous
and efficient delivery of software [16,18]. In the context of BIM adoption in the construction
industry, CI is vital for facilitating collaboration and information exchange between project
stakeholders. It enables the expeditious incorporation of design modifications, facilitates
the sharing of updated models and data, and aids in ensuring the accuracy and consistency
of information throughout the life cycle of a project. A coefficient of 0.238 indicates a
positive and statistically significant relationship between CI and BIM implementation,
indicating that a greater emphasis on CI practices is associated with an increased likelihood
of BIM implementation [17,28]. A mean value (M) of 0.237 and a standard deviation (SD)
of 0.017 reveal the average level of and variation in CI among this study’s participants.
Values of T = 14.268 and p = 0 indicate that the relationship between CI and BIM adoption
is highly significant.

Monitoring and Control (MC) is a crucial aspect of construction project management,
involving monitoring project progress, identifying deviations from intended objectives, and
implementing corrective actions. MC practices are essential for effectively implementing
and utilizing BIM technologies and processes in the context of BIM adoption. Monitoring
the quality and accuracy of BIM models, tracking changes and revisions, and evaluating
project performance based on predefined metrics are facilitated by MC. A coefficient of
0.266 indicates a positive and statistically significant relationship between MC and BIM
adoption, indicating that a greater emphasis on MC practices is associated with a greater
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likelihood of effective BIM implementation. A mean value (M) of 0.26 and a standard
deviation (SD) of 0.015 provide insight into the average level of and variation in MC among
this study’s participants. A T-statistic value of 18.186 and the corresponding p-value of 0
indicate that the relationship between MC and BIM adoption is statistically significant [41].

Project Management (PM) entails the planning, coordination, and control of all ac-
tivities necessary for the successful execution of construction initiatives. Effective project
management practices are essential for ensuring the seamless integration of BIM into project
workflows and attaining project objectives in the context of BIM adoption. PM practices
include defining project objectives, allocating resources, administering project schedules,
and monitoring team communication and collaboration. A coefficient of 0.247 indicates a
positive and statistically significant relationship between PM and BIM adoption, suggesting
that a greater emphasis on effective project management practices is associated with an
increased likelihood of successful BIM implementation [30,31,52]. A mean value (M) of
0.246% and a standard deviation (SD) of 0.011 provide insight into the average level of
and variation in PM among this study’s participants. A T-statistic value of 22.441 and the
corresponding p statistic value of 0 highlight the significance of the relationship between
PM and BIM adoption.

Resolution and Performance (RP) refers to the capacity of BIM technologies and
processes to improve the resolution and performance of construction projects. This includes
utilizing BIM capabilities to enhance project visualization, conflict detection, coordination,
and overall performance. RP practices permit the identification and resolution of design
conflicts, the optimization of construction processes, and the improvement of project results.
A coefficient of 0.277 indicates a positive and statistically significant relationship between
RP and BIM adoption, indicating that a larger emphasis on RP practices is associated with
an increased likelihood of BIM implementation success. A mean value (M) of 0.27 and a
standard deviation (SD) of 0.016 provide insight into the average level of and variation in
RP among this study’s participants. A T-statistic value of 17.151 and the corresponding
p-value of 0 indicate that the relationship between RP and BIM adoption is statistically
significant [16,27].

Structural Management (SM) incorporates the implementation of BIM’s organizational
and administrative aspects into construction projects. It requires establishing effective BIM
workflows, delineating duties and responsibilities, and assuring appropriate coordination
among the project stakeholders involved in the structural aspects. SM practices concentrate
on optimizing structural design, analysis, and documentation utilizing BIM tools and
techniques. A coefficient of 0.274 indicates a positive and statistically significant associ-
ation between SM and BIM adoption, suggesting that a greater emphasis on structural
management practices is associated with a greater likelihood of effective BIM implemen-
tation in structural engineering. A mean value (M) of 0.27 and a standard deviation (SD)
of 0.014 provide insight into this study’s participants’ average level of and variation in
SM [16,34]. A T-statistic value of 20.004 and the corresponding p statistic value of 0 confirm
the statistical significance of the association between SM and BIM adoption.

Sustainability Administration (SA) incorporates sustainable design principles and
practices into BIM-enabled construction initiatives. It entails integrating environmental
factors, energy efficiency, pollution reduction, and life cycle analysis into the project life
cycle. Using BIM tools and data, SA practices seeking to improve the sustainability per-
formance of buildings and infrastructure. A coefficient of 0.189 indicates a positive and
statistically significant relationship between SA and BIM adoption, suggesting that a larger
emphasis on sustainable administration practices is associated with a greater likelihood of
successful BIM implementation with an emphasis on sustainable construction [15,24]. A
mean value (M) of 0.188 and a standard deviation (SD) of 0.013 reveal the average level of
and variation in SA among this study’s participants [9,11]. A T-statistic value of 14.51 and
the corresponding p statistic value of 0 support the statistical significance of the association
between SA and BIM adoption.
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Value Management (VM) entails using BIM to maximize value and optimize project
outcomes. It incorporates BIM-based cost estimation, value engineering, and life cycle cost
analysis to support decision-making processes and enhance project value. VM practices
seek to increase the overall value of BIM-enabled construction projects by enhancing project
efficiency, reducing costs, and minimizing waste. A coefficient of 0.161 indicates a positive
and statistically significant relationship between VM and BIM adoption, suggesting that a
greater emphasis on value management practices is related to an increased likelihood of
successful BIM implementation and project value realization [41,58]. A mean value (M) of
0.162 and a standard deviation (SD) of 0.015 provide insights into the average level of and
the variation in VM among this study’s participants. A T-statistic value of 10.465 and the
corresponding p-value of 0 indicate that the relationship between VM and BIM adoption is
statistically significant.

6. Conclusions

Within the scope of this research project, we investigated the elements that have a role
in the construction industry’s adoption of Building Information Modeling (BIM) towards
the end-to-end life cycle management of construction projects. The concepts of Continuous
Integration (CI), Monitoring and Control (MC), Project Management (PM), Resolution and
Performance (RP), Structural Management (SM), Sustainability Administration (SA), and
Value Management (VM) were the primary foci of our research. We acquired significant
insights into the value of these constructs and how they might be used in the context of BIM
implementation within the construction sector by researching the linkages between these
constructs and the adoption of BIM. The results of our research show that it is important
to consider the relevance of each component when it comes to aiding the adoption and
utilization of BIM. Continuous Integration (CI) was identified as an important component
with a value of 0.238, showing a strong positively correlated association with BIM adoption.
This highlights how important it is to integrate BIM processes, data, and tools smoothly
across the whole project life cycle to guarantee a successful deployment and make the most
of BIM’s advantages. BIM adoption was also shown to have favorable and substantial
correlations with Monitoring and Control (MC), Project Management (PM), Resolution
and Performance (RP), Structural Management (SM), Sustainability Administration (SA),
and Value Management (VM). These factors are vital to many facets of building projects
that are being carried out. A well-defined structural management strategy, efficient project
management practices, the optimized resolution of project challenges, well-defined mon-
itoring and control mechanisms, sustainable administration practices, and value-driven
decision-making processes all contribute to successfully implementing BIM and improving
project outcomes. The findings of our research will help to contribute to a better under-
standing of the elements that influence the adoption of BIM in the construction sector. Many
stakeholders in the construction industry may use these insights as a resource to help them
prioritize their work and allocate resources more efficiently. By focusing on upgrading the
highlighted structures, organizations may create an atmosphere that is more conducive
to adopting BIM, which will lead to better project performance, greater cooperation, and
higher efficiency.

This study’s managerial and empirical implications highlight the significance of inte-
grating BIM technologies into construction projects. These technologies include Continuous
Integration (CI), Monitoring and Control (MC), Project Management (PM), Resolution and
Performance (RP), Structural Management (SM), and Sustainability Administration (SA).
Managers can improve cooperation, simplify procedures, increase project efficiency, settle
disputes, optimize performance, and promote sustainability by adopting BIM and focusing
on these areas. These implications give useful insights to stakeholders interested in using
BIM for end-to-end life cycle management and driving innovation within the construction
sector. While prior research may have briefly discussed the advantages or constraints of
BIM, the present study extensively examines the crucial elements of data interoperability,
standardization, collaboration, skill deficiencies, and resistance to change. Furthermore, the
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utilization of statistical methodologies, such as EFA and PLS-SEM, to establish associations
between BIM adoption and diverse project facets contributes to the distinct perspective of
this research. Additionally, the practical recommendations and techniques proposed, based
on empirical data analysis, distinguish this research from previous works and offer valuable
insights to professionals and policymakers in the construction management domain.

One of the limitations of this research is the relatively small sample size, which may
restrict the generalizability of the results to a wider variety of construction projects. It is
essential to remember that the research was carried out in a particular setting, and it is
possible that the findings were impacted by the specific aspects of the projects and organiza-
tions that were engaged. In light of this, extreme care should be used before the results are
extrapolated to other settings. In further studies, a bigger and more representative sample
of participants should be used to verify the results. Studies using a longitudinal design may
investigate the consequences of implementing BIM over a longer period. Optimum results
may be achieved by conducting research into the precise methods via which BIM affects
project management. Investigating the potential synergies between Building Information
Modeling (BIM) and new technologies, such as artificial intelligence and the Internet of
Things, may result in novel project management methods.

Overall, our research findings highlight the relevance of Continuous Integration,
Monitoring and Control, Project Management, Resolution and Performance, Structural
Management, Sustainability Administration, and Value Management in boosting BIM
acceptance and utilization in the construction sector. Construction industry professionals
can maximize the potential of building information modeling (BIM) and make the most of its
possibilities for better project delivery and enhanced industry practices if they acknowledge
the significance of certain constructs and make it a practice to include them in their work.
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Appendix A
Survey Questionnaire

Q1: What is your profession

• Architect
• QS
• CE
• M&E
• PM
• Others

Q2: What is your type of organization

• Contractors
• Consultants
• Clients
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Q3: Please indicate your malaysian construction industry experience

• Less than 5 Years
• 6–10 Y
• 1–15 Y
• 16–20 Y
• Over 20 Y

Q4: Do you have knowledge about BIM

• Yes
• No

Please indicate your agreement with factors that according to you are significant in affecting the BIM adoption in empowering
construction projects from end-to-end life cycle management.

Question # Questions
Strongly
Disagree

(1)

Disagree
(2)

Neutral
(3)

Agree
(4)

Strongly
Agree

(5)

1 Increased Cooperation

2 Improved Visualization

3 Conflict Detection

4 Efficient Project Management

5 Estimation and Analysis of Costs

6 Facility Administration and Maintenance

7 Sustainability and Energy Analysis

8
Construction Sequencing and Phasing for
Prefabricated and Off-Site Construction

9 Optimization of Maintenance and Operations

10 Integration and Interoperability of Data

11
Compliance with Regulations and
Documentation

12 Monitoring the Performance of the Facility

13 Value of Long-Term Assets

14
Continuous Enhancement and Learned
Lessons

15 Resource Planning and Management

16
Participant Involvement Facility Expansion
and Renovation

17
Clash Resolution and Construction Readiness
Evaluation

18 Training and Simulation

19 Asset Monitoring and Inventory Control

20 Compliance Reporting and Management

21
Remote Collaboration and Electronic
Conferences

22 Continuous Maintenance and Monitoring

23
Management of Knowledge and Lessons
Learned

24 Risk Management
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