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A B S T R A C T

This paper presents a study conducted in Osijek-Baranja County, Croatia, to predict electrical energy con-
sumption in school buildings. Data from the Energy Management Information System (EMIS) database for pri-
mary and secondary schools were analyzed using Multiple Linear Regression (MLR) and Artificial Neural 
Networks (ANN). The ANN model achieved a high R2 of 0957 in the training set, with lower Mean Squared Error 
(MSE) and Root Mean Squared Error (RMSE) than the MLR model, which had an R2 of 0950. On the validation 
set, the ANN model maintained an R2 of 0954 and showed slightly better performance with a lower Coefficient of 
Variation of RMSE (CVRMSE) of 19,79 %, compared to the MLR model’s CVRMSE of 20,50 %. These results 
indicate that the ANN model generally provides more accurate and reliable predictions for energy consumption 
in school buildings. However, both models provided a robust positive correlation between the predicted and 
actual values.

1. Introduction

Buildings have been found to account for more than 40 % of energy 
consumption in many countries worldwide (Alghoul et al., 2016; Cao 
et al., 2016; D’Agostino et al., 2017). This is also true for Croatia, where, 
according to the Energy in Croatia 2022 report, the total energy con-
sumption in buildings accounts for over 47 % of the final energy con-
sumption (Fig. 1) (Republic of Croatia Ministry of Economy and 
Sustainable Development, 2022).

Public buildings, especially schools, offer a great opportunity for 
establishing energy-efficient measures. This is because they have a large 
proportion of the total number of buildings, which leads to a substantial 
impact on both the amount of energy used and the financial resources of 
the country (Dimoudi and Kostarela, 2009). These facilities play a large 
role in water and energy consumption. However, despite the potential 
for huge savings through the use of energy and water-efficient tech-
nology, there are several challenges to their adoption that are more 
severe than those in other sectors (Papadakis and Katsaprakakis, 2023; 
Bertone et al., 2018). Regarding Croatia’s building stock composition, 
the Croatian Long-Term Strategy for National Building Stock Renovation 
by 2050 offers valuable insights. The data reveals that in 2018, 
non-residential buildings constituted a significant share, encompassing 
28 % of the total building area. Notably, educational buildings within 

this category hold an exceptionally high proportion, accounting for 
10 % of the entire non-residential building area. This dominance of 
educational buildings is expected to persist, with projections indicating 
a consistent 10 % share in 2030, 2040, and even 2050 (Table 1) 
(Ministarstvo prostornog uređenja et al., 2020).

Moreover, the breakdown of building stock composition, particularly 
the prominence of non-residential buildings, sheds light on specific areas 
that require attention for energy efficiency improvements. The projec-
tion that educational buildings will maintain their significant share in 
the future highlights the long-term implications of energy consumption 
patterns. It suggests that implementing sustainable solutions will have a 
lasting impact on reducing energy consumption and mitigating envi-
ronmental impacts in Croatia. Energy-saving retrofits for educational 
buildings have become increasingly important in recent years 
(Papadakis and Katsaprakakis, 2023; te Kulve et al., 2022; Araújo et al., 
2023; Teli et al., 2017; Zapata-Lancaster et al., 2023). Schools have a 
significant societal obligation in the construction industry because of 
their role in education (Lizana et al., 2018). According to the literature, 
the school’s energy expenditures are the second highest expense for the 
school, after the salaries of teachers and personnel (Pereira et al., 2014). 
Additionally, the Energy in Croatia report from 2022 highlights that in 
2022, the share of electrical energy consumption in the final energy 
consumption by fuel equals a significant 20,8 %, right behind petroleum 
products (Fig. 2).
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Many different elements influence the energy consumption of a 
school building (Pereira et al., 2014; Katafygiotou and Serghides, 2014; 
Perez and Capeluto, 2009). Hence, it is crucial to identify these elements 
while constructing a prediction model for energy consumption. Antici-
pating energy consumption in constructed facilities is crucial for grid 
management to conserve power, ensure optimal usage, and prevent 
wastage (Bhowmik et al., 2017; Chen et al., 2023). Nevertheless, making 
precise predictions is challenging because of unforeseeable circum-
stances and the overall disorderliness of data, and the techniques 
employed frequently produce inaccurate forecasts (Mohammed et al., 
2021). In this perspective, the Ordinance on Systematic Energy Man-
agement in the Public Sector (Official Gazette 18/2015) was adopted in 
2015, which prescribes the obligation to manage energy and water 
consumption, analysis of consumption, the method of reporting on en-
ergy and water consumption, and the methodology of systematic energy 
management in the public sector (Ministarstvo graditeljstva i pros-
tornoga uređenja, 2015). Also, the Energy Management Information 
System (EMIS) was developed to provide support for strategic planning 
of energy and sustainable management of energy resources in buildings 
that are owned or used by cities, counties, the Government of the Re-
public of Croatia, as well as in buildings of other government budgetary 
and extra-budgetary users, and public authorities (Agencija za pravni 
promet i posredovanje nekretninama, 2015). In this context, only one 
research has been conducted in Croatia regarding analyzing the per-
formance and buildings characteristics obtained from EMIS (Krstić and 
Teni, 2018).

A review of the literature indicates substantial global research on 
forecasting and analyzing school energy use, with several studies con-
ducted in neighboring countries like Serbia Herzegovina (Bećirović and 
Vasić, 2013; Stanković et al., 2009; Đukanović et al., 2022; Jurǐsević 
et al., 2018; Jovanović et al., 2018) and Bosnia and Herzegovina 
(Katicccć et al., 2020, 2021; Katicccc et al., 2021; Katicccć and Krsticć, 
2022). However, there is a notable research gap in Croatia, particularly 
concerning the prediction of electrical energy consumption in schools. 
This gap highlights the need for a focused study that identifies the key 
variables influencing energy use in Croatian schools and develops ac-
curate prediction models that can inform energy management and pol-
icy decisions.

Nomenclature

AEC Average annual electrical energy consumption, kWh/year
Ak Total useful surface area, m2

R2 Coefficient of determination
TNU Total number of users (employees and pupils), number of 

users
Ve Heated volume of the building, m3

List of abbreviations
ANN Artificial neural network
AE Autoencoders
BIM Building information modeling
CART Classification and regression tree
CNN Convolutional neural network
CVRMSE Coefficient of variation of the root mean square error
EMIS Energy Management Information System

GBR Gradient boosting regressor
HVAC Heating, ventilation, and air conditioning
kWh Kilowatt-hour
LSTM Long short-term memory
MAE Mean absolute error
MAPE Mean absolute percentage error
MLP Multi-layer perceptron
MLR Multiple linear regression
MSE Mean square error
nRMSE Normalized root mean square error
QC Quantum computing
RF Random forest
RMSE Root- mean-square error
RNN Recurrent neural network
SARIMA Seasonal Autoregressive Integrated Moving Average

Fig. 1. Share of total consumption in buildings in 2022 in final energy consumption in Croatia (Republic of Croatia Ministry of Economy and Sustainable Devel-
opment, 2022).

Table 1 
Projection of the total area of non-residential buildings in Croatia in 2030, 2040 
and 2050 (Ministarstvo prostornog uređenja et al., 2020).

Type of non-residential building 2030 [m2] 2040 [m2] 2050 [m2]

Office 10 309 712 10 831 614 11 082 926
Educational 6 236 465 6 552 169 6 704 190
Hotels and restaurants 4 650 511 4 885 930 4 999 292
Hospitals 3 280 271 3 446 326 3 526 286
Sport 462 823 486 252 497 534
Stores 12 833 465 13 483 125 13 795 956
Other 24 303 780 25 534 093 26 126 528
Total area: 62 077 026 65 219 509 66 732 712
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To address these gaps, this study aims to:

• Identify the factors influencing electrical energy consumption in 
school buildings in Osijek-baranja county in Croatia.

• Develop prediction models using Artificial Neural Networks (ANNs) 
and Multiple Linear Regression (MLR).

• Evaluate the accuracy of these models to ensure they meet the 
practical needs of building maintenance managers and school 
principals.

In light of these observations, this study aims to bridge this gap by 
focusing on two primary research questions: 

RQ1. What are the key factors influencing electrical energy con-
sumption in schools of Osijek-baranja county?

RQ2. How do multiple linear regression (MLR) and artificial neural 
networks (ANNs) perform in predicting electrical energy consumption in 
these schools?

The models were developed using actual school electrical energy 
consumption data acquired from EMIS to ensure accurate outcomes. 
Maintenance managers responsible for buildings and school principals 
could utilize the newly developed predictive model for budget planning. 
This study offers a straightforward, precise, and enhanced tool for 
advancing future electrical energy consumption predictions, facilitating 
more precise budget allocations. Moreover, it enhances energy man-
agement by furnishing a more precise predictive model for future elec-
trical energy consumption.

The rest of the paper is structured as follows: in Section 2 there is a 
literature review, in Section 3 the applied methodology is described, 
Section 4 presents the developed model using MLR, and Section 5 pre-
sents the developed model using ANN. In Section 6, a comparison is 
performed among the developed models, and in Section 7, there is a 
discussion, and conclusions are drawn.

2. Literature review

The emphasis on educational buildings as a significant portion of 
non-residential buildings underscores the importance of targeting these 
structures for energy-saving initiatives (Geraldi and Ghisi, 2020; Vas-
sallo, 2020; Børke, 2006). Some research even states that school build-
ings represent more than 95 % of global energy consumption (Corgnati 

et al., 2008). In addition, the school’s energy consumption is a 
contributing factor to the overall operating expenses of the institution. 
Following the salaries of teachers and staff, energy expenditures repre-
sent the second most substantial expense (Pereira et al., 2014). Also, 
forecasting and predicting building energy usage is the primary objec-
tive for building energy management and facility managers (Ahmad 
et al., 2017). Over the past few decades, many methods have been 
suggested for predicting energy use in building construction. Most case 
studies utilize past energy consumption data to build the prediction 
models. The methodologies developed for predicting building energy 
use can be classified into two categories: statistical methods and artifi-
cial intelligence (Li et al., 2017). An extensive review of data-driven 
tools for building energy consumption prediction by Olu-Ajayi et al. 
highlights that ANN produced better performances in more studies than 
statistical tools such as MLR. Nevertheless, MLR exhibited optimal 
outcomes in particular scenarios, such as predicting annual energy use 
(Olu-Ajayi et al., 2023).

2.1. Regression analysis and artificial neural networks (ANNs) in 
predicting energy consumption

González and Zamarreño introduced a novel method for accurately 
predicting electric loads using a feedback ANN trained using a hybrid 
algorithm. The model’s implementation provided notable results for 
electric load forecasting in buildings. It was stated that the new energy 
predictor demonstrated an accuracy similar to the best findings docu-
mented in the literature. The authors emphasize that the primary 
advantage of this system is its simplicity, which is derived from the 
straightforward nature of the proposed tool and the small and easily 
accessible resources required for its implementation in modern auto-
mation systems (Gonzalez and Zamarreno, 2005). Tso and Yau intro-
duced three modeling methods, regression analysis, decision tree, and 
ANNs, to forecast electricity consumption. The dependent variable in 
this study was the aggregate weekly electrical energy consumption 
(kWh). They conducted a two-phase survey in the summer and winter of 
1999–2000. The included independent variables were housing type, 
household characteristics, and appliance ownership, which were hy-
pothesized to impact electricity energy usage. All three proposed models 
were determined to be comparable. During the summer phase, the de-
cision tree model had a slight advantage over the other two techniques. 
On the other hand, ANN had a slightly superior performance throughout 
the winter phase compared to the other two alternatives (Tso and Yau, 

Fig. 2. Final energy consumption by energy form (Republic of Croatia Ministry of Economy and Sustainable Development, 2022).
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2007). Biswas et al. demonstrated the utilization of ANNs to estimate 
and predict energy usage in residential structures. The input variables 
from the house data comprised the number of days, outdoor tempera-
ture, and solar radiation. On the other hand, the output variables were 
the energy consumption of the house and the heat pump. The authors 
affirmed that the outcomes were deemed satisfactory for the provided 
data set and exhibited a level of statistical analysis that was in line with 
previous publications (Biswas et al., 2016). Ahmad et al. conducted a 
comparative analysis between a feed-forward back-propagation ANN 
and random forest (RF) to forecast a hotel’s hourly HVAC energy con-
sumption in Madrid, Spain. The analysis revealed that the ANN 
demonstrated a slight performance improvement, as indicated by a 
root-mean-square error (RMSE) of 4,97 compared to the RMSE of 6,10 
achieved using RF. Based on the findings, it was determined that both 
models were viable and efficient in forecasting hourly HVAC electricity 
usage (Ahmad et al., 2017). El Alaoui et al. compared in theri study the 
effectiveness of machine learning models and Seasonal Autoregressive 
Integrated Moving Averag (SARIMA) models in predicting heating en-
ergy usage for an administrative building in Chefchaouen City, Morocco. 
The results showed that while machine learning models, including 
artificial neural networks, generally outperform SARIMA, SARIMA 
models still achieve good accuracy with limited training data. The best 
performance was observed with the artificial neural network (R2=0.97, 
nRMSE=12.60 %, MAE=0.19 kWh) (El Alaoui et al., 2023). Afzal et al. 
presented a study that focuses on predicting cooling and heating loads 
using a multilayer perceptron (MLP) neural network. To optimize the 
MLP model, it was combined with eight meta-heuristic algorithms 
through a hybrid approach. The analysis revealed that the 
MLP-PSOGWO model outperformed others, achieving the highest ac-
curacy, with R2 values of 0.966 for cooling loads and 0.998 for heating 
loads (Afzal et al., 2024).

2.2. Energy consumption prediction in school buildings

Corgnati et al. carried out a field survey to gather, process, and 
examine data on the energy usage for heating purposes in a sample of 
138 buildings (117 high schools, nine office buildings, and 12 residences 
for school keepers) in the Provincia di Torino. The results demonstrate a 
satisfactory correlation between the yearly measured and adjusted 
conventional heat supply. On the other hand, the monthly heat supply 
figures reveal a significant disparity between the actual and estimated 
energy consumption. The observed outcome can be attributed to the 
variability in monitoring intervals, wherein the meters may not be 
precisely read at the end of each month. According to the authors, this 
methodology is well-suited for evaluating extensive building stocks over 
a long period. It is beneficial for measuring the yearly and total cost of 
energy service (Corgnati et al., 2008). Capozzoli et al. analyzed the 
energy use for heating in 80 school buildings in northern Italy. Two 
estimating models, namely MLR and Classification and Regression Tree 
(CART), were created and evaluated to evaluate energy usage. The two 
models were evaluated based on statistical coefficients. The analysis 
concluded that the gross heated volume, heat transfer surfaces, boiler 
size, and thermal transmittance of windows primarily impacted the 
heating energy consumption of the school buildings under consideration 
(Capozzoli et al., 2015). Beusker et al. conducted an empirical study that 
analyzed the elements influencing the heating energy usage of munic-
ipal schools and sports facilities. The study was based on a random 
sample of 105 properties in Stuttgart. The study’s primary aim was to 
propose a standardized and adaptable estimating model that can iden-
tify essential characteristics for effectively benchmarking, evaluating, 
and predicting the heating energy consumption of schools, sports facil-
ities, and combinations of both types of usage. Various linear and 
non-linear regression models have been systematically created and 
evaluated to forecast the heating energy consumption of schools and 
sports facilities. A validation test was conducted to assess the forecast 
accuracy of the stated model, which included five properties. The 

authors have discovered that the introduced model demonstrates high 
accuracy and satisfies all necessary characteristics for producing reli-
able, impartial, and efficient estimations (Beusker et al., 2012). Authors 
Mohammed et al. proposed a multiple regression-based model for esti-
mating the energy consumption of school facilities in Saudi Arabia. In 
order to enhance the precision and effectiveness of the feasibility study, 
accurate school energy consumption data was gathered and utilized to 
construct the model. With reliable benchmark data on energy use, the 
running costs of a school after its construction can be relatively inex-
pensive. The model provides a practical and inexpensive approach for 
government entities to utilize in consumption prediction (Mohammed 
et al., 2021). Faiq et al. proposed the utilization of a Long Short-Term 
Memory (LSTM) model to anticipate the energy consumption of an ac-
ademic building. This model incorporates forecasted weather data. The 
predictive model was developed by examining the correlations between 
energy consumption and weather data. The authors emphasize the 
importance of having precise day-ahead weather forecasting parameters 
in order to achieve accurate predictions. Furthermore, LSTM necessi-
tates the inclusion of external variables, such as environmental factors 
(e.g., temperature and wind speed) and schedule-related variables, to 
enhance the precision of the predictive model. The authors suggest that 
future research could enhance the model by incorporating additional 
characteristics, such as the number of occupants (Faiq et al., 2023). Cao 
et al. proposed a model for predicting energy consumption in educa-
tional facilities by including geographical variables into time series data. 
They also examined the impact of various aspects on the model using the 
cooperative game theory approach. The validity of the suggested model 
is confirmed through its application to an educational facility located in 
Xi’an, Shaanxi Province. The results indicate that the integrated energy 
consumption prediction model exhibits a reduction in RMSE value 
ranging from 13.64 % to 34.55 % compared to previous prediction 
models. Additionally, the MAE value is lowered by 10.25–30.54 %, 
demonstrating improved forecast accuracy (Cao et al., 2023). Shahid 
et al. developed a predictive model for estimating electricity and district 
heating usage over one or multiple days. They utilized advanced ma-
chine learning techniques such as Multivariate Recurrent Neural 
Network (RNN), LSTM, Convolutional Neural Networks (CNNs), and 
Autoencoders (AE). The model was trained using actual consumption 
data from six public schools in a Swedish municipality. The experi-
mental results indicate that the model has attained a high level of ac-
curacy, with RMSE and normalized root mean square error (nRMSE) 
values ranging from 18 % to 25 % and 5–6 % respectively for electricity, 
and from 20 % to 30 % RMSE and 5 % nRMSE for district heating 
(Shahid et al., 2023). Elhabyb et al. developed a predictive model for 
electricity consumption in three privately owned research university 
buildings based on a dataset gathered from January 2020 to January 
2023. Developing the prediction model entailed data preparation, 
encompassing tasks such as addressing missing data and determining the 
significance of features. The researchers employed three machine 
learning techniques, namely gradient boosting regressor (GBR), LSTM, 
and RF, as the algorithms for the predictive model. As a future possibility 
for research, the authors propose employing more robust computational 
systems or platforms to execute the LSTM algorithm, which has the 
potential to enhance its overall performance (Elhabyb et al., 2024). 
Doiphode and Najafi proposed a multi-layer perceptron (MLP) neural 
network model to predict the monthly energy usage of K-12 schools in 
Brevard County, Florida. The network’s inputs consist of the number of 
occupants, the number of working days per month, the building area, 
the average monthly external temperature, and the relative humidity, 
where the network’s output is the monthly energy usage. The chosen 
network was effectively trained utilizing three years of energy usage 
data from 25 high schools, middle schools, and elementary schools. The 
findings demonstrated that the neural network model that was created 
can precisely predict the monthly energy usage of schools (Doiphode 
and Najafi, 2020). Geraldi et al. introduced a data-driven approach that 
utilizes Bayesian Networks to forecast energy use. The authors collected 
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monthly energy bills over a three-year period from 90 public schools 
located in southern Brazil. They also obtained information about each 
school’s floor-plan area, number of students, level of education, number 
of floors, and incidence of events. As possible directions for future 
research, the authors suggest enhancing the database by incorporating 
more features and expanding the existing dataset (Geraldi and Ghisi, 
2020). Run et al. employed an MLR model to forecast the hourly elec-
tricity energy usage for school buildings in the southern region of France 
throughout the winter season. The analysis revealed that the coefficient 
of determination (R2) for the training set is 74 %, while for the testing set 
it is 77 %. One limitation of this model, as pointed out by the authors, is 
that it underestimates outcomes for power consumption levels above 30 
kWh/h. However, the model serves as a starting point for future study 
aimed at improving its prediction capacity (Run et al., 2023). Li et al. 
proposed a method for short-term prediction of air conditioning (AC) 
energy consumption, focusing on uncertain usage patterns influenced by 
occupant behavior. Applied to an educational building, the method uses 
cluster analysis to identify typical patterns and the weighted k-Near-
est-Neighbors technique to forecast the AC usage rate. An RF model is 
then developed, evaluating each variable’s significance. To improve 
accuracy in unpredictable conditions, a support vector machine is 
employed. The results show that while both models effectively predict 
AC energy consumption, the enhanced model offers notably greater 
accuracy under uncertain conditions (Li et al., 2023). Tariq et al. con-
ducted a study that explores various artificial intelligence models such 
as decision trees, K-nearest neighbors, GBR, and LSTM to predict energy 
usage in schools, emphasizing the impact of factors like school size and 
AC capacity on annual consumption. The findings indicate that while 
Decision Trees perform well in training with low prediction errors, 
K-Nearest Neighbors struggle with overfitting. GBR and LSTM models 
excel in handling diverse data ranges. The research highlights the role of 
sustainable educational buildings as interactive learning environments 
that teach students about energy efficiency and sustainability, encour-
aging the use of AI tools to optimize energy consumption in these spaces 
(Tariq et al., 2024).

2.3. Emerging techniques in energy consumption prediction

Advancements in predictive modeling techniques have revolution-
ized the field of energy consumption prediction, offering novel ap-
proaches to enhance accuracy, efficiency, and applicability across 
diverse domains.

In this perspective, quantum computing (QC) is an emerging disci-
pline that utilizes the principles of quantum mechanics to carry out in-
formation processing tasks that are not achievable with conventional 
computers. Quantum computers has problem-solving techniques that 
are inaccessible to classical computers, hence enabling them to utilize 
unique methodologies (Giani and Eldredge, 2021). Deng et al. proposed 
a novel optimization approach utilizing quantum annealing for model 
predictive control of a rooftop unit. In contrast to conventional opti-
mization techniques, the authors achieved comparable solutions with 
less than 2 % discrepancies and enhanced computational efficiency, 
reducing the time required from hours to seconds. By incorporating 
day-ahead price time-of-use demand response signals, they achieved an 
impressive 80 % decrease in overall electricity usage and a 21 % 
decrease in electricity expenses (Deng et al., 2023). Kumar K et al. 
provided a comprehensive summary of the Home Energy Management 
System and the techniques used for load forecasting. They also intro-
duced a new method that uses a Quantum Support Vector Machine to 
estimate periodic power usage accurately. The authors analyzed the 
energy consumption patterns of household appliances, sun irradiation, 
and the total load, and the model is emphasized for its notable versatility 
and performance (Nutakki et al., 2024).

In the realm of energy management, alongside advancements in 
quantum computing for optimizing computational efficiency and 
decision-making strategies, CNNs have emerged as a transformative 

technology. Xu et al. developed a building energy consumption opti-
mization model based on CNN and BIM. The authors wanted to enhance 
the advancement of BIM technology by examining professional collab-
orative design, pipeline installation, and construction optimization 
methods based on BIM technology. Additionally, they investigated the 
viability of utilizing BIM energy consumption analysis technology to 
support energy-saving design applications during the initial phase of 
building scheme design. The authors offered three optimization ap-
proaches for the energy-saving design of the case building based on a 
thorough investigation of the internal light environment, building en-
ergy consumption, and construction cost (Xu and Liu, 2023). Wang et al. 
introduced a hybrid neural network prediction model that integrates an 
attention mechanism, Bidirectional Gate Recurrent Unit, Convolutional 
CNN, and the residual connection. The model employs a Bidirectional 
Gated Recurrent Unit to train the feature vectors extracted by a Con-
volutional Neural Network (CNN) in a two-way cycle. The study 
revealed that the constructed model demonstrates higher accuracy in 
predicting outcomes during working hours compared to non-working 
hours in the office building. Additionally, the model’s prediction accu-
racy is greater for the same season compared to the entire year (Wang 
et al., 2023).

3. Methodology

Forecasting the energy usage of a school facility, particularly with 
precision, might pose difficulties. The challenge lies in numerous un-
predictable variables, such as the characteristics of physical materials 
and usage circumstances (Mohammed et al., 2021). Moreover, the 
estimation of energy usage is influenced by the challenge of identifying 
suitable patterns that connect input variables and energy consumption, 
and the complexity of precisely identifying the correlation between 
input variables and output (Kavgic et al., 2010; Raza and Khosravi, 
2015). State-of-the-art research has argued that MLR and ANN models 
can solve such problems. Accordingly, this study proposes two models 
for estimating the energy consumption of school buildings in 
Osijek-Baranja County, Croatia, one using MLR and one using ANN. The 
proposed workflow for the study is presented in Fig. 3.

3.1. Data collection

The data was obtained from the EMIS database for primary and 
secondary schools in the Osijek-Baranja County in Croatia. The obtained 
data comprised several parameters that affect energy usage, primarily 
related to building characteristics. These values were used as input data 
in the models. The models included one parameter, the average annual 
energy consumption measured in kWh / year, as the output. The data 
acquired encompassed the precise energy usage of 149 school buildings. 
To simplify the process, the data was arranged in Microsoft Excel 
workbooks (Microsoft, 2024), which is compatible with TIBCO Statis-
tica® 14.1.0 (Cloud Software Group Inc, 2024), the software used to 
develop both models.

3.2. Variable selection

Firstly, it was necessary to determine the input (independent) vari-
ables affecting school electrical energy consumption. A review of pre-
vious research in this area was used to identify the most significant input 
variables, where the average annual energy consumption was the 
output. The identified significant input variables for predicting electrical 
energy consumption of school buildings in Osijek-Baranja County, 
Croatia, are presented in Table 2 together with the relevant research 
where they were also used.

Each of these variables was selected based on their proven impact on 
energy use in buildings. The total number of users (TNU) affects energy 
consumption through increased operational demands, while the total 
useful surface area (Ak) and heated volume (Ve) influence the energy 

H. Begić Juričić and H. Krstić                                                                                                                                                                                                                Energy Reports 12 (2024) 3595–3606 

3599 



required for temperature regulation. By including these variables, our 
models aim to provide a comprehensive understanding of the factors 
contributing to energy use in buildings.

Also, after determining the input variables, it was necessary to 
determine the output (dependent) variable, which is presented in 
Table 3.

3.3. Data analysis

Table 4 presents the basic statistical measures of the gathered data, 
revealing the data’s quality and detecting any false information, if 
present. The table displays different school areas, volumes, and numbers 
of users, enabling the creation of an accurate model that encompasses a 
wide range of scenarios and circumstances.

The provided statistics offer a comprehensive view of the distribution 
of each variable:

• TNU: Ranging from 3 to 894, with an average of approximately 
132,96 and a notable standard deviation of 176,21 indicating 
considerable variability in the number of users among the sample.

• Ak: With values spanning from 37,70 to 6210,26, the total area is 
notably higher at around 1107,71 accompanied by a substantial 

standard deviation of 1316,78 indicating significant variance in Ak 
across the dataset.

• Ve: Demonstrating a wide range of values from 113,10 to 25935,40 
the mean heated volume stands at 4435,26 with a considerable 
standard deviation of 5357,29 indicating notable disparities in Ve 
among the observations.

• AEC: Spanning from 393,3855 to 59566,18 with an average con-
sumption of 13624,54 and a substantial standard deviation of 
15486,72 reflecting significant diversity in AEC across the sampled 
school buildings.

The presence of small district schools and larger main ones likely 
influences the observed variability in electrical energy consumption 
across the dataset. Such differences in the scale and infrastructure of 
educational facilities can lead to significant variations in energy usage. 
Small district schools may have fewer students, smaller buildings, and 
less complex HVAC systems than larger main schools. Consequently, 
their energy consumption levels are expected to be lower on average. 
Conversely, larger main schools have more extensive facilities, including 
larger classrooms and administrative areas requiring more energy. Thus, 
the wide range of electrical energy consumption values observed in the 
dataset is consistent with the differing characteristics and sizes of the 
schools included, highlighting the importance of considering such fac-
tors when analyzing energy usage patterns and developing predictive 
models.

3.4. Variable correlations

Table 5 presents a correlation matrix showing the relationships be-
tween different input variables within the studied context. Each cell in 

Fig. 3. Proposed workflow of the study.

Table 2 
Literature review-based identified significant input variables for the develop-
ment of a model for predicting the consumption of electrical energy in school 
buildings.

Input 
variable

Description Label Unit of 
measure

Also used in

Total number 
of users 
(employees 
and pupils)

Represents the total 
number of 
individuals using 
the building, 
affecting energy 
consumption.

TNU number 
of users

(Mohammed et al., 
2021; Tso and 
Yau, 2007; 
Raatikainen et al., 
2016; Alshibani, 
2020; Kim et al., 
2019; Desideri and 
Proietti, 2002; 
Gaitani et al., 
2010)

Total useful 
surface area

The total area 
within the building 
that is heated/ 
cooled, influencing 
energy 
requirements.

Ak m2 (Mohammed et al., 
2021; Tso and 
Yau, 2007; 
Raatikainen et al., 
2016; Alshibani, 
2020; Kim et al., 
2019; Gaitani 
et al., 2010; Issa 
et al., 2010)

Heated 
volume of 
the building

The total volume of 
space within the 
building that 
requires heating, 
impacting energy 
use.

Ve m3 (Corgnati et al., 
2008; Raatikainen 
et al., 2016; 
Desideri and 
Proietti, 2002)

Table 3 
Output variable for the development of a model for predicting the consumption 
of electrical energy in school buildings.

Output variable Label Unit of measure

Average annual electrical energy consumption AEC kWh/year
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the table displays the correlation coefficient between two variables, 
indicating the strength and direction of their relationship.

The diagonal elements of the matrix (where variables are compared 
with themselves) are always 1, as they represent the correlation of a 
variable with itself, which is perfect and expected. The off-diagonal el-
ements reveal the correlations between pairs of variables. For example:

• The correlation coefficient between TNU and Ak is 0,771756, indi-
cating a strong positive relationship between the total number of 
users and the building area.

• Similarly, the correlation coefficient between TNU and Ve is 
0,773813, indicating a strong positive relationship between the total 
number of users and the building’s heated volume.

• The correlation coefficient between Ve and Ak is 0,847632, indicating 
an even stronger positive relationship between the building volume 
and area.

It is essential to observe that a positive value signifies a positive 
correlation, indicating that an increase in one variable results in an in-
crease in the other (Schober et al., 2018). Conversely, a negative value 
signifies a negative correlation, indicating that an increase in one vari-
able will decrease the other. However, in this case, there are no such 
relationships. All of the correlations are very significant, as indicated by 
their high values and the red markings. These noted correlations have a 
significance level of p<0.05. In addition to analyzing the correlation 
among the input variables, it is crucial to examine the correlation be-
tween the target and input variables. This allows for exploring the 
relationship between the model output, the school’s electrical energy 
consumption, and the model input variables. Table 6 shows the input 
variables’ correlations with the target energy consumption variable 
(kWh/year).

From the table, it is visible that:

• TNU has a correlation coefficient of 0,871359 with AEC, suggesting a 
strong positive correlation. This implies that changes in TNU are 
closely associated with changes in AEC, indicating TNU’s significant 
influence on electrical consumption.

• Ak exhibits a higher correlation coefficient of 0,944174 with AEC, 
indicating an even stronger positive correlation than TNU. This 
suggests that Ak has a particularly pronounced impact on AEC, 

potentially indicating its crucial role in determining electrical 
consumption.

• Ve also demonstrates a relatively high correlation coefficient of 
0,896220 with AEC, indicating a strong positive correlation. This 
suggests that variations in Ve are closely linked to changes in AEC, 
highlighting Ve’s importance in influencing electrical consumption.

In this study, a crucial step was taken to ensure the reliability of our 
model. The initial data set was split into two sets using a random pro-
cess: the training set, which was used to create or develop a model, and 
the validation set, which was used solely to validate the developed 
models’ error assessment predictions. This study utilized original elec-
trical energy usage data for 149 school buildings in Croatia’s Osijek- 
Baranja County that was retrieved from EMIS. In the training set, 105 
school buildings’ worth of data were chosen at random, accounting for 
70,5 % of the total of 149 school buildings. Additionally, there are 44 
school buildings in the validation set or 29,5 % of the total. Similar ra-
tios were also used in (Jain et al., 2014; Kontokosta and Tull, 2017).

Continuing with the paper, the results of developed models for pre-
dicting electrical energy consumption using multiple linear regression 
and neural networks are presented in the example of school buildings in 
Osijek-Baranja County in Croatia, using a given data set.

4. Developed models for predicting electrical energy 
consumption

4.1. MLR model

In order to identify which of all potential independent variables can 
affect the dependent variable, the regression models in this work are 
used to relate electrical energy usage to one or more variables. This 
procedure defines a mathematical model and establishes the relation-
ships between the variables. Regression analysis makes it possible to 
define the relationship between independent and dependent variables, 
analyze variables regarding their availability, relevance, and collection, 
and construct mathematical models for prediction. Regression analysis 
is a technique for creating models that uses statistical analysis of 
essential variables and historical data (Ghania and Ahmad, 2010). In 
this study, the connection between one dependent and three indepen-
dent variables was analyzed using MLR. The following is the typical 
form of the MLR equation with k independent variables (Papić, 2005): 

Ŷ = a+ b1⋅X1 + b2⋅X2 + ...+ bk⋅Xk (1) 

as follows:

• Ŷ expected or predicted value of the dependent variable,
• a intercept
• b1...k regression coefficients and
• X1...n of independent variable values.

In the development of the MLR model, a stepwise regression method 
was used, using the TIBCO Statistica® 14.1.0 (Cloud Software Group 
Inc, 2024) for the training set. A common data exploration tool called 
the stepwise method selects explanatory variables for an MLR model 
based on statistical significance (Smith, 2018). Each variable’s p-value is 
determined throughout the stepwise regression process, and if a 

Table 4 
Statistical analysis of the data.

Type of variable Variable Valid N Mean Minimum Maximum St. Deviation

Input TNU 149 132,96 3,0000 894,00 176,21
Ak 149 1107,71 37,7000 6210,26 1316,78
Ve 149 4435,26 113,1000 25935,40 5357,29

Output AEC 149 13624,54 393,3855 59566,18 15486,72

Table 5 
Correlation of model input variables.

Variable TNU Ak Ve

TNU 1,000000 0,771756 0,773813
Ak 0,771756 1,000000 0,847632
Ve 0,773813 0,847632 1,000000

Table 6 
Correlations of input variables with target variable.

Variable Correlation with AEC

TNU 0,870730
Ak 0,943930
Ve 0,895643
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variable’s p-value is higher than 0.05, it is eliminated from consider-
ation until the best model with a consistent variable and a p-value of less 
than or equal to 0.05 is found (Alqahtani and Whyte, 2016).

The best developed MLR model for the dependent variable AEC 
which predicts the average annual electrical energy consumption has 
the following form: 

AEC = 378,31+22,95TNU+7, 65 Ak +0, 52 Ve [kWh/year] (2) 

as follows:

• TNU independent variable representing the total number of users 
including employees and pupils (number),

• Ak independent variable representing the total useful surface area of 
the building (m2),

• Ve independent variable representing the heated volume of the 
building (m3),

4.2. ANN model

A multilayer perceptron (MLP) type of ANN was used to form the 
model. It is a type of ANN with multiple layers of interconnected nodes 
(Rana et al., 2018). These nodes process information and learn from data 
by applying weights and activation functions. MLP training aims to 
reduce the discrepancies between the model-calculated values and the 
intended target values. The weights are adjusted to decrease errors if the 
network provides an incorrect response or if the errors exceed a pre-
determined threshold (Widrow and Lehr, 1990). Errors are decreased, 
increasing the likelihood that subsequent network responses will be 
accurate. The network shows datasets containing pairs of the desired 
target and input patterns successively during the learning process. An 
MLP’s learning algorithm consists of two steps: one for forward propa-
gation and the other for backward propagation (Park and Lek, 2016). 
Fig. 4 shows the architecture of the optimal selected model.

The architecture of MLP refers to the number of layers and the 
number of nodes in each layer. In this case, 3–5-1 indicates the 
following:

• 3: There is an input layer with 3 nodes. These nodes represent the 
features or variables that are fed into the network.

• 5: There is one hidden layer with 5 nodes. This layer performs the 
main information processing and learning within the network.

• 1: There is an output layer with 1 node. This node represents the 
network’s prediction or output value.

It is also important to mention the stopping criteria where the early 
stopping and a maximum number of epochs were used to manage the 
training process. Specifically, training was stopped if there was no 
improvement in validation loss over 10 consecutive epochs, and the 
training at 100 epochs to avoid excessive computation. Besides, the 
control parameters included a learning rate of 0001, a batch size of 32, 
and the Adam optimizer. The network’s hidden layer utilized the ReLU 
activation function, and L2 regularization with a penalty of 0,01 was 
applied to prevent overfitting. The MLP architecture consisted of an 
input layer with 3 nodes, a single hidden layer with 5 nodes, and an 
output layer with 1 node as previously mentioned.

5. Results

Finding the actual values of the expected (predicted) model out-
comes—that is the degree to which the values of the dependent variables 
may be predicted—is essential (Hawkins, 2004). Representativeness, or 
the model’s capacity to use a subset of independent variables to explain 
changes in the dependent variable, is assessed using absolute and rela-
tive metrics. These indicators are derived from the distribution of the 
dependent variable’s value divergence from its anticipated and arith-
metic means (McKelvey and Zavoina, 1975). To evaluate the accuracy of 
the produced prediction model and enable comparison with other 
models with various parameters, various statistical techniques are 
employed to assess the prediction error.

The following coefficients were used to estimate the prediction error 
of the developed models: mean absolute percentage error (MAPE), co-
efficient of determination (R2), mean square error (MSE), root mean 
square error (RMSE), and coefficient of variation of the root mean 
square error (CVRMSE). Unlike most error metrics, MAPE (Mean Ab-
solute Percentage Error) doesn’t have a strict upper limit. The reason for 
this is because it involves taking the absolute value of the percentage 
error. Unlike most error metrics, MAPE doesn’t have a strict upper limit. 
The reason for this is because it involves taking the absolute value of the 
percentage error (Saigal and Mehrotra, 2012). The closer the coefficient 
of determination R2 value is to 1, the more representative the prediction 
model is (Schneider et al., 2010). Generally, a lower MSE is desirable as 
it signifies that the model’s predictions are, on average, closer to the 
actual values. Conversely, a high MSE suggests that the model’s pre-
dictions are consistently far off from the real values (Wang and Bovik, 
2009). Typically, the upper limit for CVRMSE of 30 % is used to measure 
representativeness (Lulić, 2014). The equations utilized to compute the 
statistical techniques for prediction error estimation are displayed in 
Table 7.

Fig. 4. Optimal selected model (MLP 3–5–1).

Table 7 
Expressions for the calculation of statistical methods for estimating prediction 
error.

No. Coefficient Expression Ref.

1 R2

R2 = 1 −

∑n
t=1 (yi − ŷi)

2

∑n
t=1 (yi − Y)2

(Papić, 2005)

2 MSE MSE =
1
n
∑n

t=1
(yi − ŷi)

2 (Sobol, 1991)

3 RMSE
RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

t=1
(yi − ŷ)2

√ (Sailee, 2019)

4 CVRMSE CVRMSE =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

t=1 (yi − ŷ)2
√

Y
⋅100(%)

(Cacabelos et al., 
2017)

5 MAPE
MAPE =

1
n
∑n

t=1

⃒
⃒
⃒
⃒
(yi − ŷi)

yi

⃒
⃒
⃒
⃒⋅100(%)

(Small and Wong, 
2002)
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where it is as follows:

• yi real values of the dependent variable,
• ŷi predicted or expected values of the dependent variable and
• Y arithmetic mean of the dependent variable.

In this perspective, Table 8 presentes the values of the aforemen-
tioned coefficients for estimating the prediction error of the developed 
MLR model and the ANN model in the model training set.

It can be seen from the table that both MLR and ANN achieve high R2 

values (0950 and 0957 respectively) which indicates a strong positive 
correlation between the predicted and actual AEC values. However, the 
MLR model has a higher MSE compared to the ANN model. While MSE 
itself is difficult to interpret directly due to its units being squared errors, 
a lower MSE generally suggests a better fit. Similarly, the MLR model has 
a slightly higher RMSE compared to the ANN model. Following the same 
logic, a lower RMSE indicates the model’s predictions are on average 
closer to the actual AEC values. Both models have very similar MAPE 
values (around 27 %).

With a CVRMSE of 24,99 the NN model appears to generalize slightly 
better to unseen data compared to the MLR model (CVRMSE of 26,83). 
This suggests that the NN model is less prone to overfitting the training 
data and might perform better on new data it hasn’t been explicitly 
trained on.

Considering both R2and CVRMSE, the ANN model seems to be the 
better choice for predicting AEC in this case. It achieves a strong cor-
relation with the actual values while also generalizing slightly better to 
unseen data.

After the training set, the performances of the developed models 
were also verified on the validation set which is an independent set on 
which the model development was not performed. Table 9 presentes the 
values of the aforementioned coefficients for estimating the prediction 
error of the developed MLR model and the ANN model in the model 
validation set.

Both models achieve high R2 (0.949 and 0.954) on the validation 
data, indicating a strong positive correlation between the predicted and 
actual AEC values. This suggests both models generalize reasonably well 
to unseen data. The ANN model maintains a slight edge in terms of MSE 
and RMSE compared to MLR. This suggests the ANN model’s predictions 
are, on average, slightly closer to the actual AEC values in the validation 
set. Both models have very similar MAPE (Mean Absolute Percentage 
Error) values (around 24.5 %). Both MLR and ANN seem to perform well 
on the validation data, with the NN model having a slight advantage in 
terms of accuracy. The high R2 values and similar MAPE suggest both 
models capture the overall trends in the data.

6. Discussion

The literature review showed that although much research has been 
conducted globally, there is a lack of research regarding predicting en-
ergy consumption in Croatia. Also, the review revealed a need to provide 
a straightforward and repeatable framework and model for estimating 
the energy consumption of school buildings. Therefore, this paper pre-
sented a study conducted in Osijek-Baranja County in Croatia to identify 
the variables influencing electrical energy consumption in school 
buildings and develop models for successful prediction of electrical en-
ergy consumption.

This study provides a comprehensive analysis of electrical energy 
consumption in Croatian school buildings by addressing two key 

research questions: identifying the key factors influencing electrical 
energy consumption and comparing the effectiveness of MLR and ANNs 
in predicting this consumption.

1. What are the key factors influencing electrical energy consumption 
in schools of Osijek-baranja county?

The research identified several crucial factors that influence elec-
trical energy consumption in Croatian school buildings, which are sig-
nificant for both understanding and managing energy use:

• Total Number of Users (Employees and Pupils): The number of in-
dividuals using the building, including both staff and students, has a 
substantial impact on energy consumption. Schools with higher oc-
cupancy levels require more energy for lighting, cooling, heating, 
and other electrical needs. This finding aligns with the general 
observation that increased building occupancy often correlates with 
higher energy use.

• Total Useful Surface Area: The overall floor area of the school 
building directly affects its energy consumption. Larger surface areas 
necessitate more lighting and potentially more extensive heating and 
cooling systems to maintain comfortable indoor conditions. This 
factor is consistent with global trends where larger building spaces 
typically lead to higher energy demands.

• Heated Volume of the Building: The volume of the building that 
needs to be heated is another critical factor. Schools with larger 
heated volumes generally consume more energy for heating pur-
poses. This factor highlights the importance of building insulation 
and HVAC system efficiency in managing energy use, as buildings 
with greater volumes require more energy to achieve and maintain 
desired temperatures.

2. How do MLR and ANNs perform in predicting electrical energy 
consumption in these schools?

The comparative analysis of MLR and ANN models provides valuable 
insights into their predictive capabilities:

Performance Metrics: The ANN model consistently outperformed the 
MLR model in terms of accuracy and error metrics. With R2 values of 
0.957 for the training set and 0.954 for the validation set, the ANN 
model demonstrated a strong correlation with actual energy consump-
tion data. Its RMSE and MAPE values also indicated superior predictive 
accuracy and generalizability compared to the MLR model. This per-
formance is in line with previous research highlighting the efficacy of 
ANNs in energy prediction tasks.

Model Robustness: Both models showed a slight decrease in R2 and 
an increase in error metrics when applied to the validation data, sug-
gesting that neither model severely overfits the training data. However, 
the ANN model exhibited better performance in generalizing to new 
data, with lower CVRMSE values indicating a slightly reduced tendency 
for overfitting.

Comparative Effectiveness: The MLR model, while performing well, 
did not match the ANN model’s accuracy. MLR achieved R2 values of 
0.950 and 0.949 for the training and validation sets, respectively, with 
slightly higher RMSE and MAPE values.

In conclusion, the findings suggest that while both MLR and ANN 
models are effective tools for predicting energy consumption, the ANN 
model offers a slight advantage in terms of accuracy and generaliz-
ability. This aligns with existing literature and reinforces the value of 

Table 8 
Statistical analysis of the MLR and ANN models’ prediction errors in the training data set.

No. Dependent variable Model type R2 MSE RMSE CVRMSE MAPE

1 AEC MLR 0950 1,054E+07 3246,19 26,83 % 27,70 %
2 AEC NN 0957 9,146E+05 3024,25 24,99 % 27,28 %
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employing advanced predictive modeling techniques for energy man-
agement in school buildings. Future research should continue to explore 
these methodologies and consider integrating additional factors and 
data sources to further enhance prediction accuracy and efficiency. As 
mentioned above, the ANN model, configured with a 3–5-1 architecture, 
achieved R2 values of 0957 and 0954 for the training and validation 
datasets, respectively, indicating a strong correlation between predicted 
and actual values. The RMSE values of 3024,25 in the training set and 
3415,75 in the validation set, coupled with MAPE values of 27,28 % and 
24,53 %, suggest that the ANN model provides accurate predictions and 
generalizes effectively to unseen data. This performance is comparable 
to the findings of González and Zamarreño (Gonzalez and Zamarreno, 
2005), who reported high accuracy in electric load forecasting using a 
feedback ANN, and Ahmad et al (Ahmad et al., 2017)., who observed a 
slightly better performance of ANN over random forests in predicting 
hotel HVAC energy consumption.

In comparison, as mentioned earlier, the MLR model achieved R2 

values of 0950 and 0949 for the training and validation sets, respec-
tively, with RMSE values of 3246,19 and 3537,51. The MAPE values of 
27,70 % and 24,60 % are consistent with the performance of similar 
models in the literature. For instance, Tso and Yau’s (Tso and Yau, 2007) 
regression analysis model, while comparable to decision tree and ANN 
models, demonstrated slight variations in performance across seasons. 
Similarly, the MLR model proposed by Run et al. for hourly electricity 
usage in school buildings achieved lower R2 values of 74 % and 77 % for 
training and testing, respectively (Run et al., 2023). However, the cur-
rent study’s MLR model demonstrates superior predictive accuracy. 
Overall, the models developed in this study exhibit strong performance 
metrics, with the ANN model showing a slight edge in generalization, 
making it a reliable tool for predicting energy consumption in buildings.

7. Conclusion

The ANN model exhibited superior accuracy and generalizability in 
predicting energy consumption, making it a powerful tool for this pur-
pose. However, this increased performance comes at the cost of inter-
pretability, posing significant challenges for non-technical users. The 
intricate architecture of neural networks, characterized by numerous 
interconnected layers and weights, complicates the understanding of 
how input variables influence output predictions. This complexity can 
be a barrier for users who need to trust and comprehend the model’s 
decisions, particularly in contexts where transparency is crucial.

Conversely, the MLR model, while slightly less accurate than the 
ANN model, offers the advantage of simplicity and ease of interpreta-
tion. Its straightforward nature makes it more accessible to users 
without advanced technical expertise, allowing them to easily under-
stand how different building characteristics affect energy use. Given that 
the model is intended for use by school facility managers or princi-
pals—who may lack specialized knowledge in machine learning—the 
MLR model’s transparency becomes a critical asset. Although the ANN 
model outperforms the MLR in predictive performance, its complexity 
could hinder its adoption in practical settings.Therefore, despite its 
lower accuracy, the MLR model may be more suitable for facilitating 
informed decision-making in school energy management.

However, this study has several limitations. First, the models were 
developed and validated using data from a specific county, which may 
limit their generalizability to other regions with different climatic con-
ditions and building practices. Yet, while the current model is optimized 
for a specific county, its underlying framework provides a robust 

foundation for adaptation. Therefore, as a future research direction, the 
authors propose that future studies should validate the model in various 
geographical settings by collecting data from schools in different regions 
and considering their unique characteristics. However, since Croatia is 
divided into continental and coastal regions, this model ensures appli-
cability to the whole continental part of Croatia since cities and towns 
with 2200 and more degree days of heating and annual energy needs are 
calculated according to the reference climate data for continental 
Croatia. Also, it is essential to note that the study accounted for diverse 
school-building practices by including both primary and secondary 
schools, enhancing the model’s robustness.

The complexity of the ANN model also presents a limitation, as it 
may require significant computational resources and expertise to 
implement and interpret effectively. Therefore, as a future research di-
rection, it would be beneficial to explore the integration of advanced 
computational techniques such as quantum computing, which holds 
promise in optimizing model performance and handling complex data-
sets more efficiently. Additionally, adapting convolutional neural net-
works (CNNs) enables the investigation of spatial and temporal data in 
energy consumption dynamics within school facilities. CNNs have 
shown effectiveness in pattern recognition tasks and could offer new 
perspectives on identifying energy usage patterns that traditional 
models may overlook.

As another limitation, the study did not explore the long-term impact 
of energy savings by using these predictive models, leaving room for 
further investigation. In this perspective, as a future research direction it 
is proposed to extend the study by applying the developed predictive 
models in a long term period, such as several years, to analyse the effects 
of using the models on actual consumption reduction.

To conclude, the significance of this study lies in its contribution to 
the field of energy management in educational institutions. By 
comparing the accuracy and interpretability of the ANN and MLR 
models, this research provides valuable insights into the trade-offs be-
tween model complexity and usability. The findings underscore the 
importance of considering the end-user’s technical expertise when 
selecting predictive models for practical applications. Moreover, the 
proposed future research directions offer a pathway for enhancing the 
models’ robustness, generalizability, and practical utility, ultimately 
contributing to more effective energy management strategies in schools.
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Hrvoje Krstić: Writing – review & editing, Validation, Supervision, 
Methodology, Formal analysis. Hana Begić: Writing – original draft, 
Visualization, Investigation, Data curation, Conceptualization.

Declaration of Competing Interest

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper.

Data availability

Data will be made available on request.

Table 9 
Statistical analysis of the MLR and ANN models’ prediction errors in the validation data set.

No. Dependent variable Model type R2 MSE RMSE CVRMSE MAPE

1 AEC MLR 0949 1,251E+07 3537,51 20,50 % 24,60 %
2 AEC NN 0954 1,167E+07 3415,75 19,79 % 24,53 %
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Katić, D., Krstić, H., Marenjak, S., 2021. Energy performance of school buildings by 
construction periods in federation of Bosnia and Herzegovina. Buildings 11 (2), 42.

Kavgic, M., Mavrogianni, A., Mumovic, D., Summerfield, A., Stevanovic, Z., Djurovic- 
Petrovic, M., 2010. A review of bottom-up building stock models for energy 
consumption in the residential sector. Build. Environ. 45 (7), 1683–1697. https:// 
doi.org/10.1016/j.buildenv.2010.01.021.

Kim, T., Kang, B., Kim, H., Park, C., Hong, W.-H., 2019. The study on the energy 
consumption of middle school facilities in Daegu, Korea. Energy Rep. 5, 993–1000. 
https://doi.org/10.1016/j.egyr.2019.07.015.

Kontokosta, C.E., Tull, C., 2017. A data-driven predictive model of city-scale energy use 
in buildings. Appl. Energy 197, 303–317. https://doi.org/10.1016/j. 
apenergy.2017.04.005.
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