Sažetak | Okvirne armiranobetonske (AB) konstrukcije dominantno se koriste za izvodenje
niskih i srednje visokih građevina na području Republike Hrvatske, te ponekad je
ovakve građevine u seizmički aktivnim zonama potrebno ojačati, kako bi prema
potrebi povećali nosivost, krutost i/ili duktilnost osnovne nosive konstrukcije. U ovoj
disertaciji razrađena je upotreba zidanih ispuna, s različitim tipovima veza ispuna i AB
okvira, kao element ojačanja osnovne AB konstrukcije za potresna djelovanja. Poznato je da
prisustvo ispuna, i bez dodatnog povezivanja s okvirom, značajno mijenja dinamički odgovor
konstrukcije, pri čemu elementi ispuna ne mogu biti zanemareni pri dinamičkoj ili statičkog
analizi građevine. Postojeći važeći propisi ne sadrže pojašnjenja o utjecaju ovakvih ojačanih
konstrukcija, sto čini ovo područje dodatno zanimljivim.
Dosadašnje spoznaje pokazale su da jednolika prisutnost zidanog ispuna doprinosi većoj
krutosti i nosivosti sustava, pri čemu konstrukcija doživljava manje globalne pomake, time i
manja oštećenja, sto se često smatra pozitivnim učincima zidanog ispuna. S druge strane
prisutnost ispuna može dovesti do lokalnih ili globalnih plastičnih deformacija osnovne
okvirne konstrukcije, formirajući tako kratke stupove, posmične slomove čvorova stup-greda,
ili formiranje tzv. mekane etaže, te redukcije duktilnosti pojedinih elemenata i/ili konstrukcije
u cjelini, sto su dakako jedni od negativnih učinaka ispuna. Ojačanjem okvira dodavanjem
ispuna u kombinaciji s međusobnim vezama nastoji se prvenstveno poboljšati međudjelovanje
ispuna i okvira, koje se može promatrati i kroz doprinos duktilnosti sustava, te kroz reduciranje
mogućih negativnih učinaka ispuna spomenutih ranije, na jednorasponskim jednoetažnim
uzorcima.
Doktorska disertacija obraduje ponašanje praznih ravninskih AB okvira, te ravninskih
AB okvira ojačanih dodavanjem zidanog ispuna u kombinaciji s međusobnim vezama ispuna
i elemenata okvira, za potresna djelovanja. Koristeći dosadašnje spoznaje o kompozitnom
sustavu okvira s ispunom, te njihovom međudjelovanju, primarni cilj ove disertacije bio je
istražiti mogućnosti korištenja zidova ispuna u AB okvirima kao metodu ojačanja,
promatrajući pri tome cikličke odzive dobivene eksperimentalnim ispitivanjem pojedinih
modela u svojoj ravnini. Kako bi doprinijeli razumijevanju ojačanja okvira pomoću zidanih
ispuna, provedena su eksperimentalna i numerička istraživanja. Eksperimentalni dio
istraživanja proveden je na 10 jednorasponskih i jednoetažnih uzoraka duktilnih i neduktilnih
armiranobetonskih okvira ojačanih zidanih ispunom (šuplja glinena blok i puna opeka), te 7
srodnih referentnih uzoraka korištenih za evaluaciju ojačanja ispunom i kvalitetu veza ispuna
i okvira. Uz statičko cikličko ispitivanje samih uzoraka okvira, provedeno je ispitivanje i
mehaničkih karakteristika ugrađenih materijala (betona, armature, zidnih elemenata, zida,
morta i kompozitnih materijala). Uzorci okvira izvedeni su u mjerilu 1:2.5 za duktilne,
odnosno 1:2 za neduktilne okvire, ispitanih pri stalnim vertikalnim i uvećavanim
horizontalnim cikličkim opterećenjem (engl. Static Reversed-Cyclic Test). Ispitni uzorci
mogu se grupirati prema vrsti zidnog elementa (šuplji glineni blok i puna opeka), prema tipu
AB okvira (duktilni i neduktilni), te tipu veza ispuna i okvira. Ovime dobivamo ukupno 6
različitih konguracija ojačanja, od kojih su pojedini primijenjeni na dva tipa ispuna.
Obradom vlastitih eksperimentalnih ispitivanja prikazane su karakteristike u ponašanju
svakog uzorka, te utvrđen je najpogodniji tip ojačanja za duktilne i neduktilne okvire. Za sve
eksperimentalne uzorke, od kojih su 10 izvornih i 7 referentnih, provedena je kalibracija istih
pomoću nelinearnih makro{modela u programu OpenSees (PEER, Berkeley,
opensees.berkeley.edu). Numerički modeli temeljeni su na tzv. grednim elementima za
stupove i grede, te tlačnim dijagonalama za zidove ispuna, za koje je postignuto
zadovoljavajuće poklapanje cikličkih odziva u odnosu na eksperimente. Isti modeli korišteni
su u numeričkoj studiji slučaja, za predviđanje dinamičkog odziva s primjenom na realnoj
građevini (Tsukuba, Japan) putem IDA analiza, pri čemu su konstruirane IDA krivulje i
krivulje oštetljivosti, krivulje ranjivosti, krivulje gubitaka za svaki tip ojačanja posebno, kako
bi ocijenili učinkovitost pojedinog ojačanja u odnosu na referentne modele.
Na kraju je ukratko prikazana i eksperimentalna studija slučaja prostorne FRAMA
građevine, Model #1 i Model #2 (FRAmed-MAsonry Composites for Modelling and
Standardization, framed-masonry.com), koja je izvedena u mjerilu 1:2.5, te dinamički
ispitana na potresnoj platformi u institutu IZIIS (Institut za Zemljotresno Inženjerstvo i
Inženjersku Seizmologiju, iziis.edu.mk), Skoplje, Makedonija. FRAMA građevina, Model
#1 i #2 sadrže vrlo slične karakteristike u geometriji, vrsti ispuna i tipu ojačanja kao sto je
to slučaj s pojedinim izvornim ravninskim eksperimentalnim uzorcima iz prvog dijela
istraživanja. FRAMA Model #1 reprezentira osnovni model AB okvira sa zidanim ispunom
od šuplje blok opeke, bez dodatnih veza ispuna i okvira, dok Model #2 reprezentira ojačan
model izveden na prethodno ispitanom AB okviru (Model #1), pri čemu je korištena puna
opeka u kombinaciji s vertikalnim serklazima. U kratko su prikazani globalni dinamički
odzivi, maksimalni međukatni pomaci i usporedba vlastitih frekvencija Modela #1 i #2 kao
evaluaciju ojačanja Modela #2 u odnosu na Model #1. |
Sažetak (engleski) | Reinforced concrete (RC) frame structures are dominantly used for the construction
of low and medium{high structures on the territory of Croatia, and sometimes
such structures in seismically active zones need to be strengthened to increase the
lateral bearing capacity, stiness and/or ductility of the primary bearing structure. In this
dissertation, the use of masonry inlls, with dierent types of connection between the inll
and the RC frame, was elaborated as an element for strengthening the basic RC structure for
the earthquake action. It is known that the presence of inlls, and without any additional
connection with the frame, signicantly changes the dynamic response of the structure,
whereby the inll elements can not be neglected in the dynamic or static analysis of the
structure. Existing valid regulations do not contain any clarication of the impact of such
reinforced structures, which makes this area even more interesting.
The present ndings have shown that the uniform presence of masonry inlls contributes
to greater stiness and lateral (in-plane) bearing capacity, with the structure experiencing
less global displacements, and thus less damage, which is often considered to be positive
eects of masonry inlls. On the other hand, the presence of inlls can lead to local or global
plastic deformations of the primary frame structure, forming short columns, shear failures of
the beam-column joints or forming the so-called soft storey mechanisms, and reduction of
the ductility of individual elements and/or structure as a whole, which are certainly one of
the negative eects of inlls. By strengthening the frame by adding inlls in combination
with mutual interconnection, it is primarily intended to improve the interaction between the
inll and the frame, which can be observed also through the contribution of the ductility of
the system, and by reducing the possible negative eects of the inll mentioned earlier, on
the one-bay, one-storey specimens.
The doctoral dissertation deals with the behaviour of bare planar RC frames, as well as
the planar RC frames strengthened by the addition of masonry inlls in combination with
the mutual interconnection of the inll and the frame elements for the earthquake action.
Using the present knowledge of the composite inlled{frame system and their interaction,
the primary aim of this dissertation was to explore the possibilities of using the inll walls
in RC frames as a strengthening method, observing the in-plane cyclic responses obtained
by experimental testing of particular specimens. In order to contribute to understanding
the strengthening of the frame by masonry inlls, experimental and numerical researches
have been carried out. The experimental part of the study was carried out on 10 one{bay,
one-storey specimens of ductile and non-ductile RC frames strengthened with masonry inll
(hollow clay block and solid clay bricks units) and 7 related reference specimens used for
evaluation of inll strengthening and the quality of the inll and frame mutual interconnection.
In addition to the static cyclic test of specimens itself, the mechanical characteristics of the
embedded materials were also tested (concrete, reinforcement, wall elements, masonry, mortar
and composite materials). Frame specimens are built in scale 1:2.5 for ductile and 1:2 for
non-ductile frames, tested at constant vertical and incrementally increased horizontal cyclic load (static reversed-cyclic test). The test specimens can be grouped according to the type
of inll element (hollow clay block and solid clay brick units), type of RC frame (ductile and
non-ductile), and type of connection between the inll and the frame. This provides a total
of 6 diferent strengthening congurations, of which some are applied to two types of inll.
By analysing the results of these experimental studies, the characteristics of the behaviour
of each specimen were presented, and the most suitable type of strengthening for the ductile
and non-ductile frames was determined. For all experimental specimens, of which 10 original
and 7 used as references, the same calibration was carried out using nonlinear macro-models
in OpenSees (PEER, Berkeley, opensees.berkeley.edu). Numerical models are based on so-
called beam-column elements for columns and beams, and specic type of compressive/tensile
elements for inll walls, for which satisfactory responses to cyclic responses have been achieved
with respect to experiments. The same models were used in the numerical case study for
predicting the dynamic response to the application on a real building (Tsukuba, Japan)
by Incremental Dynamic Analysis (IDA), where IDA curves, fragility curves, vulnerability
curves and loss curves were designed for each type of strengthening separately to evaluate
the eciency of a particular strengthening in relation to reference models.
Finally, an experimental case study of the spatial FRAMA building, Model #1 and
Model #2 (FRAmed-MAsonry Composites for Modelling and Standardization,
framed-masonry.com), which was built in scale of 1:2.5 and dynamically tested shaking
table at the IZIIS (Institute of Earthquake Engineering and Engineering Seismology,
iziis.edu.mk), Skopje, Macedonia. The FRAMA building, Model #1 and #2, have very
similar characteristics in geometry, type of inll and strengthening type, as is the case with
some original planar experimental specimens from the first part of the research. FRAMA
Model #1 represents the reference RC frame with masonry inlls of a hollow clay block,
without additional mutual interconnections between the inlls and the frame, while Model
#2 represents a strengthened model derived from a previously tested RC frame (Model #1),
using a solid clay brick in combination with vertical tie-columns. Global dynamic responses,
maximum intermediate drifts, and comparison of fundamental frequency of Model #1 and
#2 are shown briefly, as an strengthening evaluation of Model #2 with respect to Model #1. |