Znanstveni rad - Izvorni znanstveni rad
The Use of Machine Learning Models in Estimating the Compressive Strength of Recycled Brick Aggregate Concrete
Computational Engineering and Physical Modeling, 4 (2021), 4; 1-25. https://doi.org/10.22115/cepm.2021.297016.1181

Khademi, Atefehossadat; Behfarnia, Kiachehr; Kalman Šipoš, Tanja; Miličević, Ivana

Citirajte ovaj rad

Khademi, A., Behfarnia, K., Kalman Šipoš, T. i Miličević, I. (2021). The Use of Machine Learning Models in Estimating the Compressive Strength of Recycled Brick Aggregate Concrete. Computational Engineering and Physical Modeling, 4. (4), 1-25. doi: 10.22115/cepm.2021.297016.1181

Khademi, Atefehossadat, et al. "The Use of Machine Learning Models in Estimating the Compressive Strength of Recycled Brick Aggregate Concrete." Computational Engineering and Physical Modeling, vol. 4, br. 4, 2021, str. 1-25. https://doi.org/10.22115/cepm.2021.297016.1181

Khademi, Atefehossadat, Kiachehr Behfarnia, Tanja Kalman Šipoš i Ivana Miličević. "The Use of Machine Learning Models in Estimating the Compressive Strength of Recycled Brick Aggregate Concrete." Computational Engineering and Physical Modeling 4, br. 4 (2021): 1-25. https://doi.org/10.22115/cepm.2021.297016.1181

Khademi, A., et al. (2021) 'The Use of Machine Learning Models in Estimating the Compressive Strength of Recycled Brick Aggregate Concrete', Computational Engineering and Physical Modeling, 4(4), str. 1-25. doi: 10.22115/cepm.2021.297016.1181

Khademi A, Behfarnia K, Kalman Šipoš T, Miličević I. The Use of Machine Learning Models in Estimating the Compressive Strength of Recycled Brick Aggregate Concrete. Computational Engineering and Physical Modeling [Internet]. 2021. [pristupljeno 20.02.2025.];4(4):1-25. doi: 10.22115/cepm.2021.297016.1181

A. Khademi, K. Behfarnia, T. Kalman Šipoš i I. Miličević, "The Use of Machine Learning Models in Estimating the Compressive Strength of Recycled Brick Aggregate Concrete", Computational Engineering and Physical Modeling, vol. 4, br. 4, str. 1-25, 2021. [Online]. Dostupno na: https://urn.nsk.hr/urn:nbn:hr:133:293122. [Citirano: 20.02.2025.]

Prijavite se u repozitorij kako biste mogli spremiti objekt u svoju listu.